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Real time formalism
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® Contour ordered Green'’s functions
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Real-time formalism: Equilibrium

® In equilibrium
p = exp(—pH)/Z with Z = Trexp(—0H), (=1/T

® Can be implemented by adding an imaginary part to the contour
Imt

® Correlation functions with real times: iG (z] , =3 )
® Fields periodic (bosons) or anti-periodic (fermions) in imaginary time

® Feynman rules = time integrals — contour integrals
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2PI-formalism: The ¢-functional

® Introduce local and bilocal sources

Z[J, K] = N/ D¢ exp {iS[cb] +i{Jig1}; + {%K12¢1¢2}1J
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2PI-formalism: The ¢-functional

® Introduce local and bilocal sources
219K = N [ Doexp iSl6] + i (o1}, +{ 5 Kiaonda} |
12

® Generating functional for connected diagrams

217, K] = exp(iW[J, K])
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2PI-formalism: The ¢-functional

® Introduce local and bilocal sources
219K = N [ Doexp iSl6] + i (o1}, +{ 5 Kiaonda} |
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® Generating functional for connected diagrams
Z1J, K] = exp(iW[J, K])

® The mean field and the connected Green’s function
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2PI-formalism: The ¢-functional

Introduce local and bilocal sources
. . i
219K = N [ Doexp iSl6] + i (o1}, +{ 5 Kiaonda} |
12

Generating functional for connected diagrams
21, K] = exp(iW[J, )

The mean field and the connected Green’s function

W 52W:>5W_1[ ¢ iGia)
5T 5T100s | 0Ky  2iPrP2 T2

12 —

P1

\

N~

standard quantum field theory

Legendre transformation for ¢ and G-

P, Gl = WL K]~ {11}, — 5 (o162 +Gr2)Kisys
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2PI-formalism: The ¢-functional

® Saddle point expansion of path integral:

I, G] =So[¢] + %Tﬂn(_iG_l) + % {Dl_Ql(G” B D12)}12

+ ®[p, G] < all closed 2Pl interaction diagrams, Diz = (-0 —m?) ™"
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2PI-formalism: The ¢-functional

® Saddle point expansion of path integral:
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+ ®[p, G] < all closed 2Pl interaction diagrams, Diz = (-0 —m?) ™"

® Equations of motion

oI
0p1

!
= —J1 —{Ki12p2}, =0,
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2PI-formalism: The ¢-functional

® Saddle point expansion of path integral:

I, G] =So[¢] + %Tﬂn(_iG_l) + % {Dl_Ql(GlQ B D12)}12

+ ®[p, G] < all closed 2Pl interaction diagrams, Diz = (-0 —m?) ™"

® Equations of motion

oI

!
— = —J1 — {Ki2p2}5 =0,
0p1

® Equation of motion for the mean field ¢ and the “full” propagator ¢

, P L _ :
—Op —m2p:=j = —@, —I(D121 — G ) i=—ix =2

od
0G 21
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2PI-formalism: The ¢-functional

Saddle point expansion of path integral:

I, G] =So[¢] + %Tﬂn(_iG_l) + % {Dl_Ql(GlQ B D12)}12

+ ®[p, G] < all closed 2Pl interaction diagrams, Diz = (-0 —m?) ™"

Equations of motion

oI

!
— = —J; — {K12g02}2 = 0,
01

Equation of motion for the mean field ¢ and the “full” propagator G

, P L _ :
—Op —m2p:=j = —@, —I(D121 — G ) i=—ix =2

od
0G 21

Integral form of Dyson’s equation:
(GG19 = D19 + {Dllf 21/2/ G2/2}1,2,

Closed set of equations of for ¢ and &
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Diagrammar

® |[agrangian
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Diagrammar

® |[agrangian

R

® 2Pl generating functional

id = o + + o + Re R + ¢ o+ - .-

| & o

mean field part Correlations
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Diagrammar

® |[agrangian

R

® 2Pl generating functional

id = o + + o + Re R + ¢ o+ - .-

I GB)\GD |

mean field part Correlations

® Equation of motion for the mean fields

i(D—I—mQ)go:@-i-@ + i + _x’. oR L ...
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Diagrammar

® |[agrangian

R

® 2Pl generating functional

id = o + + o + Re R + ¢ o+ - .-

| & o

mean field part Correlations

® Dyson equation for the Self-energy

—i212=ﬁ+ —o—— 1 OB @0 | —@ o— |-
I | | |

| |
mass terms damping width

(momentum dependent)
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2PI-formalism: Features

Truncation of the Series of diagrams for ®
Expectation values for currents are conserved = “Conserving Approximations”
In equilibrium iT'[p, G] = In Z(B) (thermodynamical potential)

consistent treatment of Dynamical quantities (real time formalism) and
thermodynamical bulk properties (imaginary time formalism) like energy, pressure,
entropy

Real- and Imaginary-Time quantities “glued” together by Analytic properties from
(anti-)periodicity conditions of the fields (KMS-condition)

Self-consistent set of equations for self-energies and mean fields
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How to renormalize and solve the equations of motion?

Why renormalization?
® Diagrams UV-divergent
® Control the physical parameters in vacuum: Masses, couplings

® “In-medium modifications” controlled from theory alone
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How to renormalize and solve the equations of motion?

Why renormalization?
® Diagrams UV-divergent
® Control the physical parameters in vacuum: Masses, couplings

® “In-medium modifications” controlled from theory alone
Difficulties compared to perturbation theory

® Self-consistency = Resummation of infinitely many perturbative diagrams
® Diagrams do not show all divergences explicitely = “hidden divergences”

® Both, explicit and hidden divergences, can be nested and overlapping
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How to renormalize and solve the equations of motion?

Why renormalization?
® Diagrams UV-divergent
® Control the physical parameters in vacuum: Masses, couplings

® “In-medium modifications” controlled from theory alone
Difficulties compared to perturbation theory

® Self-consistency = Resummation of infinitely many perturbative diagrams
® Diagrams do not show all divergences explicitely = “hidden divergences”

® Both, explicit and hidden divergences, can be nested and overlapping
What about the numerics?
® Cannot use intermediate regularization which can be removed after renormalization

® BPHZ-Renormalization = Get directly finite equations of motion

® But integrands have singularities
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An example: Hartree approximation

b = 1) =  —ix =

@
® Temperature dependent effective mass: M? = m? + &

® “On-shell renormalization scheme”: m is mass of particles in vacuo
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An example: Hartree approximation

b = 10 =  —ix =

@
® Temperature dependent effective mass: M? = m? + &

® “On-shell renormalization scheme”: m is mass of particles in vacuo

® From perturbative point of view: Resummation of *

Renormalization and selfconsistency — p.10



An example: Hartree approximation

b = 1) =  —ix =

@
Temperature dependent effective mass: M? = m? + %

“On-shell renormalization scheme”: m is mass of particles in vacuo

From perturbative point of view: Resummation of ©

Renormalized self-energy

. O OO
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An example: Hartree approximation

o = o) = —ix=
@
® Temperature dependent effective mass: M? = m? + &
® “On-shell renormalization scheme”: m is mass of particles in vacuo

® From perturbative point of view: Resummation of * ”

® Renormalized self-energy
l @ o
- @ - D - ;6: - Q)

® Result: Renormalized equation of motion, “gap equation”:

D>
N>
SN
/\I
S~
N—"
M !
®
5

>
e
~~
S~
N—"

A M? A d4p
2 2 2 2 2 2
M= =m=* 4+ Xen =m~ + 52 (M In —m2 — Eren) + —2 / 2 )4 216 (p” — M*)n(po)

A\ 4
~~

—0 for T—0

n(po) : Bose—Einstein distribution
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Renormalization: General proof

® Renormalizationat7 =0

® Power-counting for self-consistent propagators as in perturbation theory:
d=4—F
Usual BPHZ-renormalization for wave function, mass and coupling constant
In practice: Use Lehmann-representation and dimensional regularization
Closed self-consistent finite Dyson-equations of motion
Numerically treatable

L I
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Renormalization: General proof

® Renormalization at finite temperature with vacuum counterterms

& Split propagator in vacuum and T-dependent part
= +
iG iG (vec) iG(™)

® Expand self-energy around vacuum part

_ i3 (vac) —in(0) i

® Need further splitting of propagator

=

4

i(G(T)
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Renormalization: General proof

® Renormalization of the four-point vertex

»

»

¥
¥

A(p,q) =A(0,0) + T (p,q) — T (0,0) + i/

o

>0 linearin GV = —p@ — = N
/N
N/
N y r(4)
N/
Equation of motion= | A = r(4) T ( )
/ AN / AN
A
/N
N/
s-channel Bethe-Salpeter equation: - - o&4: - - cuts more than
PN three lines!

“BPHZ Boxes” in ladder-diagrams do not cut inside T"(4).
Asymptotics + BPHZ-formalism: T (1, p) — T (1,0) =2 O(1— ) with a>0
Renormalized eq. of motion for A:

d4l
(2m)*

T (p, 1) = T (0, DG (DAL,

+i [ S AODEEP OO - 19 00)

Self-energy finite with vacuum counter terms Renormalization and seffconsistency — p.13



Example: tadpole and sunset

® The d-functional

—ir4 =

Q0 ©
-0 0
A XX
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Example: tadpole and sunset

® The d-functional

00 8
-0 B

® The renormalized vacuum self-energy

r |
! ! ' !

—iX = Q + JQL—I— @ + —|—:@:> ~+over.
R I I

Numerics: Used dispersion (Lehmann) representation for propgators

= renormalized kernels to be calculated by perturbative Feynman integrals
Renormalized equations of motion solved iteratively

Calculate A(0, ¢q) with the same techniques

o o0 b0
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Example: tadpole and sunset

® Renormalization at finite temperature

—in™ (p) = - + B

D p O 0 0 0

#® Only finite integrals
#® Numerics for three-dim integrals on a lattice in pg and |p]
#® Equations of motion solved iteratively
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Re X[GeV?]
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Results: the vacuum sunset self-energy
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| p=300 MeV ——
p=400 MeV ——

0 02 04 06

0.8
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Im X for A=20
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Difference between perturbative and self-consistent calculation unvisible!

Tadpole contribution “renormalized away” = on-shell renormalization scheme

Main contribution from the pole term of the propagator

Threshold for continues part of the spectral function /s = 3m!
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Results: sunset+tadpole diagrams at finite temperature

Re X
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Results: sunset+tadpole diagrams at finite temperature

Re X[GeV?]
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Results: sunset+tadpole diagrams at finite temperature

Pert. Re X for A=30, T=150 MeV Pert. Im X for A=30, T=150 MeV
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Effects of self-consistency

Low-energy plateau in Im X2

finite spectral width leads to a smoothing of “threshold” structures and a further
increase in width

counterbalanced by real part: tadpole term adds mass, which in the self-consistent
treatment lowers the effective mass again

for not too high couplings/temperature: sunset part adds spectral width which
increases the self-consistent mass compared to the perturbative one

for higher couplings/temperature: sunset contribution lowers the real part again
compared to the perturbative result
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Symmetry properties of -derivable approximations

Problem with ®—Functional: Most approximations break symmetry!
Reason: Only conserving for

incomplete resummation leads to breaking of crossing symmetry

L I B B

Define Green’s function at given mean field ¢:

o[, G

oG G=Gei[¥]

1l
o

® Define new effective 1PI action functional

Lett[p] = I, Get[©]]
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Symmetry properties of ®-derivable approximations

°

°

Symmetry analysis = I'g[¢] sSymmetric functional in ¢

Stationary point
5Feff

0P | =g

=0

wo and G = Ggg[po]: self—consistent d—Functional solutions!
It generates external vertex functions fulfilling Ward—Takahashi identities

External Propagator

52T ef[ ]

(G )12 =
ext 59015902 oo

Gext generally not identical with Dyson resummed propagator
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Example: Hartree approximation

Hatree approximation:
R 8

External self-energy defined on top of Hartree approximation

e RE QXX XX

-~

Eint

Well-known result: RPA—Resummation restores symmetry
Renormalization by the same counterterms as the self-consistent diagrams

resums the crossing-symmetric channels missing in the self-consistent
approximation

in principle can be generalized to all ®-derivable approximations
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Numerical study of Hartree

® Self-consistent masses for o-meson (mode parallel to mean field) and the
m-mesons (modes perpendicular to mean field)

Self-consistent o-mass at finite temperature Self-consistent t-mass at finite temperature
0.7 I T T T T T 0.6 T T T T T T T
0.6 i 0.5
057 0.4
— 04 r .
> - 03
O 03¢ O,
© B
0.2
= o2} =
0.1 - 0.1

broken phase 1 ——— |

ol broken phase 1 —— | 0L

~ symmetric phase _ symmetric phase

-0.1 ' | -0.1 '
0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4

T[GeV] T[GeV]

® Ward-Takahashi-identity for self-energy = Pions massless (Goldstone’s theorem)

® Self-consistent approximation violates symmetries!
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Numerical study of RPA-resummation

External o-mass at T=150 MeV (stable solution) External o-mass at T=150 MeV (stable solution)

e e

e S ZZ

s 22

= S O S S
R RIS

S

LR AT R TAATS
R TR R IR IR AR
s s

S S
e
e R

o=pw
T T 11

S

TR

SR,

s
Sy

s
S S N
SN
R

R

p[GeV]

608 : 0.8
polGeVi | 1277550 O polGeVi | 12775570

External m—-mass at T=150 MeV (stable solution) External 6-mass at T=150 MeV (stable solution)

Re m_ °[GeV?] S Im m_“[GeV7]

8

A

DA
005 - e OO

0% ]! Y
0. 015 | AR

09 R 0.2 |
-0 W -0.25 |
1.6

734

8 o[GeV] 0 025z X _‘p.é)'gp[GeV]

0.8
polGeVi ' 12747570 °

Ward-Takahashi identity restored by RPA-resummation

Internal lines of RPA-diagrams are the symmetry violating self-consistent
propagators

Remnants of symmetry violation: Wrong thresholds from non-zero masses of
GO|dSt0ne mOd es Renormalization and selfconsistency — p.25
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Conclusions and outlook

Self-consistent ®-derivable approximations: Renormalizable with
temperature-independent counterterms

Symmetry analysis and (partial) recovery of symmetries
“Toolbox” for application to more realistic models
Outstanding problem: Local gauge symmetries!

First ideas: Projection to physical degrees of freedom

For more details see http://theory.gsi.de/ vanhees/index.html
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