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Abstract
The renormalization of a gapless Φ-derivable Hartree–Fock approximation to the O(N)-symmetric λφ4

theory is considered in the spontaneously broken phase. This kind of approach was proposed in our pre-
vious paper [1] in order to preserve all the desirable features of Φ-derivable Dyson-Schwinger resummation
schemes (i.e., validity of conservation laws and thermodynamic consistency) while simultaneously restoring
the Nambu–Goldstone theorem in the broken phase. It is shown that unlike for the conventional Hartree–
Fock approximation this approach allows for a scale-independent renormalization in the vacuum. However,
the scale dependence still persists at finite temperatures. Various branches of the solution are studied. The
occurrence of a limiting temperature inherent in the renormalized Hartree–Fock approximation at fixed
renormalization scale µ is discussed.
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I. INTRODUCTION

Self-consistent Φ-derivable approximations
were introduced long ago in the context of the
nonrelativistic many-body problem [2, 3] and
then extended to relativistic quantum field the-
ory [4, 5]. Recently the interest in this method
has been revived in view of its fruitful appli-
cations to calculations of the thermodynamic
properties of the quark–gluon plasma [6] and
to non-equilibrium quantum-field dynamics [7–
9], in particular in terms of the off-shell kinetic
equation [10].

Φ-derivable approximations are preferable for
the dynamical treatment of a system, since they
fulfill the conservation laws of energy, momen-
tum, and charge [3, 7, 10]. Moreover, the Φ-
derivable scheme also guarantees the thermo-
dynamic consistency of an approximation [3],
which makes it advantageous also for thermo-
dynamic calculations. However, the Φ-derivable
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scheme has its generic problems which were also
realized long ago [5, 11].

The first problem is related to the fact
that Φ-derivable Dyson-Schwinger resummation
schemes violate Ward–Takahashi identities be-
yond the one-point level. This, in particular,
results in the violation of the Nambu–Goldstone
(NG) theorem [5, 11–13] in the phase of spon-
taneously broken symmetry. On the other
hand, so called “gapless” approximations [11]
respect the NG theorem (which is referred to
as the Hugenholtz–Pines theorem in physics of
Bose–Einstein condensed systems), though vio-
late conservation laws and thermodynamic con-
sistency. In Ref. [13] it was shown that any
Φ-derivable approximation can be corrected in
such a way that it respects the NG theorem
and becomes gapless. However, such modifica-
tions again violate conservation laws and ther-
modynamic consistency and, hence, leads back
to the problems of the gapless scheme. Recently
we have proposed a phenomenological way to
construct a “gapless Φ-derivable” Hartree–Fock
(gHF) approximation to the λφ4 theory in the
phase of spontaneously broken O(N) symme-
try [1]. This approximation simultaneously pre-
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serves all the desirable features of Φ-derivable
schemes and respects the Nambu–Goldstone the-
orem in the broken phase. The treatment of
Ref. [1] was based on a naive renormalization,
where all divergent terms were simply omitted.
This was done in order to avoid possible confu-
sions between effects of restoring the NG theo-
rem and those related to renormalization. In the
present paper we return to the issue of renormal-
ization.

The renormalization of the Φ-derivable ap-
proximations is precisely the second main prob-
lem. Following Baym and Grinstein [5] it was
believed that renormalization of Φ-derivable ap-
proximations is possible only with medium (e.g.,
temperature) dependent counter terms, which
is inconsistent with the goal of renormaliza-
tion. Great progress in the proper renormaliza-
tion of such schemes was recently achieved in
Refs. [13, 14, 16–18]. As the main result it was
shown that partial resummation schemes can in-
deed be renormalized with medium-independent
counter terms provided the scheme is generated
from a two-particle irreducible (2PI) functional,
i.e., a Φ-functional. Still, as we are going to
demonstrate below, certain problems remain in
the case of spontaneously broken symmetry.

As an example case we investigate the O(N)
model in the spontaneously broken phase which
is a traditional touchstone for new theoretical
approaches, well applied to a variety of physical
phenomena, such as the chiral phase transition
in nuclear matter. Thus we continue the discus-
sion of the “gapless Hartree-Fock approximation
started in our previous paper [1] and investigate
its features towards renormalization in compar-
ison to the standard HF-approximation.

II. GAPLESS HARTREE–FOCK (gHF)
APPROXIMATION

We consider the O(N)-model Lagrangian

L =
1

2
(∂µφa)

2 −
1

2
m2φ2 −

λ

4N
(φ2)2

+ H · φ,
(1)

where φ = (φ1, φ2, ..., φN ) is an N -component
scalar field, φ2 = φaφa, with summation over a

implied. For H = 0 this Lagrangian is invariant
under O(N) rotations of the fields. If H = 0
and m2 < 0, the symmetry of the ground state
is spontaneously broken down to O(N −1), with
N − 1 Goldstone bosons (pions). The external
field H · φ = Haφa is a term which explicitly
breaks the O(N) symmetry. It is introduced to
give the physical value of 140 MeV to the pion
mass.

The effective action Γ for this Lagrangian in
the real-time formalism is defined as (cf. Ref.
[7])

Γ{φ,G} = I0(φ) +
i

2
Tr
(

lnG−1
)

+
i

2
Tr
(

D−1G − 1
)

+ Φreal-time{φ,G},

(2)

where φ is the expectation value of the field, G
is the Green’s function, D is the free Green’s
function, I0(φ) is the free classical action of the
φ field, Tr implies space–time integration and
summation over field indices a, b, ... All the con-
siderations below are performed in terms of the
thermodynamic Φ functional which differs from
Φreal-time in the factor of iβ, where β = 1/T is
the inverse temperature. In the case of a spa-
tially homogeneous thermodynamic system, an
additional factor appears: the volume V of the
system. Thus, the thermodynamic Φ is

Φ = (−iT/V )Φreal-time.

In terms of the CJT formalism [4], the same ef-
fective action Γ is given as (e.g., cf. Ref. [8])

Γ{φ,G} = I(φ) +
i

2
Tr
(

lnG−1
)

+
i

2
Tr
(

D−1
φ G − 1

)

+ Γ2{φ,G},

(3)

i.e., already in terms of the tree-level Green’s
function, Dφ(1, 2) = δ2I/δφ2δφ1, and the full

classical action of the φ field, I(φ). In the ther-
modynamic limit, the effective potential, VCJT,
and its interaction part, V2, are defined as

VCJT = (−iT/V )Γ, V2 = (−iT/V )Γ2.

Naturally, V2 is similar to Φ but is not quite the
same. Contrary to V2, the Φ functional includes
all 2PI interaction terms, i.e. also those of zero
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and first loop order which result from interac-
tions with the classical field (first two graphs in
(4)).

The gHF approximation to the O(N) theory
is defined by the Φ functional [1]

ΦgHF = + + + ∆Φ, (4)

where the diagrams on the r.h.s. constitutes the
conventional HF approximation, while the phe-

nomenological NG-theorem-restoring correction

∆Φ is specified below, see Eq. (9). Here the
crossed pins denote the classical fields φa, and
loops are tadpoles

= Qab =

∫

β
d4kGab(k) (5)

in terms of Gab Green’s functions, where the
Matsubara summation

∫

β
d4qf(q) ≡ T

∞
∑

n=−∞

∫

d3q

(2π)3
f(2πinT, ~q) (6)

is implied with T being a finite temperature.
Within the Φ-derivable scheme the r.h.s. of

the equations of motion for the classical field (J)
and the Green’s function (self-energy Σ) follow
from the functional variation of ΦgHF with re-
spect to the classical field φ and Green’s function
G, respectively

�φ + m2φ = J =
δΦgHF

δφ

= + , (7)

G−1 − D−1 = Σ = 2
δΦgHF

δG

= + + 2
δ∆Φ

δG
, (8)

where D is the free propagator.

The ∆Φ correction, introduced in Ref. [1],
is unambiguously determined proceeding from
the following requirements: (i) it restores the
NG theorem in the broken-symmetry phase, (ii)
it does not change results in the phase of re-
stored O(N) symmetry, because there is no need
for it, (iii) it does not change the HF equation
for the classical field, since the conventional Φ-
derivable and gapless schemes [5, 11] provide the
same classical-field equation already without any
modifications. In particular, due to this latter
requirement the ∆Φ correction does not con-
tribute to the classical-field equation (7). Pro-
ceeding from these requirements, this ∆Φ can be
presented in manifestly O(N) symmetric form

∆Φ = −
λ

2N

[

N(Qab)
2 − (Qaa)

2
]

. (9)

Here and below, summation over repeated in-
dices a, b, c, ... is implied, if it is not pointed out
otherwise.

The nature of this correction can be under-
stood as follows. For the full theory, i.e., when
all diagrams in the Φ functional are taken into
account, the gapless and Φ-derivable schemes
are identical and both respect the NG theorem.
The conventional Φ-derivable HF approximation
omits an infinite set of diagrams which is neces-
sary to restore its equivalence with the gapless
scheme. The ∆Φ correction to the HF approxi-
mation takes into account a part of those omit-
ted diagrams (at the level of the actual approx-
imation), and thus restores this equivalence in
the pion sector. For the further discussion we
switch to the notation in terms of the CJT ef-
fective potential, see e.g. [4, 19, 20], in order to
comply with previous considerations in the liter-
ature.

The manifestly symmetric form of the CJT
effective potential in the gHF approximation
reads
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VgHF(φ,G) =
1

2
m2φ2 +

λ

4N
(φ2)2 − H · φ +

1

2

∫

β
d4k ln detG−1(k)

+
1

2

∫

β
d4k

{[

(

k2 + m2
)

δab +
λ

N

(

φ2δab + 2φaφb

)

]

Gba(k) − 1

}

+
λ

4N
(QaaQbb + 2QabQba) + ∆Φ, (10)

e.g., cf. [20]. All quantities are symmetric with
respect to permutations of indices.

Since the self-energy (8) is momentum inde-
pendent, the general form of the Green’s func-
tion can be written as follows

G−1
ab (k) = k2δab + M2

ab, (11)

where M 2
ab is a constant mass matrix. The equa-

tions for Gcd, i.e., for the corresponding tadpoles
Qab, and the fields φc result from variations of
VgHF over Gcd and φc, respectively,

M2
cd = m2δcd (12)

+
λ

N

[

φ2δcd + 2φcφd + 3Qaaδcd + 2(1 − N)Qcd

]

,

Hc = m2φc +
λ

N

[

φ2φc + Qaaφc + 2Qcdφd

]

. (13)

These are equations in a general nondiagonal
representation. Applying projectors

Ππ
cd =

1

N − 1

(

δcd − φcφd/φ
2
)

, (14)

Πσ
cd = φcφd/φ

2, (15)

to Eq. (12), we project it on π and σ states. In
order to project the mean-field equation (13) on
the σ-direction, we just multiply it by φc.

In the diagonal representation (φσ 6= 0, Hσ =
H and Hπ = φπ = 0) these equations take the
following form

M2
σ = m2 +

λ

N

[

3φ2 + (5 − 2N)Qσ + 3(N − 1)Qπ

]

= M2
π +

λ

N

[

2φ2 + 2(N − 1)(Qπ − Qσ)
]

, (16)

M2
π = m2 +

λ

N

[

φ2 + 3Qσ + (N − 1)Qπ

]

, (17)

H = φ

[

m2 +
λ

N

(

φ2 + 3Qσ + (N − 1)Qπ

)

]

, (18)

where M 2
π = Ππ

dcM
2
cd and M2

σ = Πσ
dcM

2
cd. Here

we used Qσ = Qσσ and Qπ = Qππ in terms of
definition (5). From these equations it is evi-
dent that the NG theorem is fulfilled. Indeed,
in the phase of spontaneously broken symmetry
(H = 0) the square-bracketed term of the field
equation (18) equals zero, which is precisely the
pion mass, cf. Eq. (17). At the same time, as it
has been demonstrated in numerous papers (see,
e.g., Refs. [5, 11, 12, 19]), the solution of the
conventional HF set of equations (7)–(8), i.e.,
without ∆Φ, violates the NG theorem. A de-
tailed analysis of the conventional HF equations
in a notation similar to ours has been given in
Ref. [19].

III. RENORMALIZATION OF THE gHF
APPROXIMATION

Significant progress in proper renormaliza-
tion of Φ-derivable approximations was recently
achieved in Refs. [13, 14, 16]. Here we follow
the renormalization scheme of Ref. [13], i.e., that
constructed precisely for the conventional HF
approximation to λφ4 theory in the O(N) bro-
ken phase. This renormalization is based on the
BPHZ formalism.

A. Equations of Motion

The equations of motion (16)–(18) involve
tadpole terms which, based on the explicit form
of the Green’s function (11), can be written as

Qa =

∫

d3k

(2π)3
1

εa(~k)

[

n
(

εa(~k)
)

+
1

2

]

, (19)
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where εa(~k) = (~k2 + M2
a )1/2 and

n(ε) =
1

exp(ε/T ) − 1
(20)

is the thermal occupation number. Evidently,
the Q-function consists of two parts

Qa = QT
a + Q(div)

a , (21)

where

QT
a =

∫

d3k

(2π)3
1

εa(~k)
n
(

εa(~k)
)

(22)

is the convergent thermal part of the tadpole,
which is finite, and the divergent part

Q(div)
a =

1

2

∫

d3k

(2π)3
1

εa(~k)

=
M2

a

(4π)2

(

−
1

ε
+ ln

M2
a

µ2
− 1

)

(23)

is regularized within dimensional regularization.
Here ε → 0, and µ is a regularization scale. We
apply the same mass independent renormaliza-
tion conditions as in Ref. [13], i.e., that in the
symmetric vacuum the self-energies vanish [21]

Σa(T = 0, φ = 0,m2 = µ2 > 0) = 0, (24)

∂m2Σa(T = 0, φ = 0,m2 = µ2 > 0) = 0, (25)

for all a. Such a renormalization scheme pre-
serves the O(N) symmetry of the model [21].
Since Σa is momentum independent in the
approximation under consideration, additional
momentum-derivative conditions are not re-
quired. Upon application of this scheme, Eqs.
(16)–(18) keep their form with the Qa quantities
substituted by the renormalized tadpoles.

Q(ren)
a = QT

a

+
1

(4π)2

[

M2
a

(

ln
M2

a

µ2
− 1

)

+ µ2

]

. (26)

As it was shown in Ref. [13], this renormal-
ization description requires only vacuum (tem-
perature independent) counter terms. For the
sake of further discussion, note that according

to Ref. [13] the renormalization of the conven-
tional HF approximation results in precisely the
same equations as those in the CT scheme of
Ref. [19], in spite of the different approaches
used. The renormalized conventional HF ap-
proximation was thoroughly studied in [19].
Therefore, those results are very useful for com-
parison with the present treatment.

B. Effective Potential

The thermodynamic potential (10) is renor-
malized following the procedure outlined in
Ref. [14]. In the gHF approximation complica-
tions arise only in the ln detG−1(k) term. Be-
cause of the topology of the diagrams used in the
gHF approximation, for all other contributions
to the effective action, we only have to insert the

already renormalized self-energies, i.e., Q
(ren)
a

tadpoles of Eq. (26), to renormalize them. This
is legitimate, because we do not encounter any
additional contributions from subdivergences, cf.
Ref. [14]. In the diagonal representation the re-
maining part to be renormalized takes the form

1

2

∫

β
d4k ln det G−1(k) = Lσ + (N − 1)Lπ, (27)

where we have introduced the brief notation

La =
1

2

∫

β
d4k lnG−1

a (k)

=

∫

d3k

(2π)3

{εa

2
+ T ln

[

1 − exp
(

−
εa

T

)]}

.(28)

The La also consists of two parts: the convergent
thermal part

LT
a = T

∫

d3k

(2π)3
ln

[

1 − exp

(

−
εa(~k)

T

)]

, (29)

which is finite, and the divergent integral

L(div)
a =

∫

d3k

(2π)3
εa(~k)

2
. (30)

This expression implicitly depends on tempera-
ture through the mass Ma. We regularize it by
means of a momentum cut-off Λ:
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L(reg)
a (Ma) =

∫

d3k

(2π)3
εa(~k)

2
Θ
(

Λ2 − ε2
a(

~k)
)

=
1

3(2π)2

(

(

Λ2 − M2
a

)3/2
Λ

−
1

8

[

2Λ3
√

Λ2 − M2 − 5ΛM2
√

Λ2 − M2 − 3M4 lnM + 3M 4 ln
(

Λ +
√

Λ2 − M2
)]

)

.(31)

To renormalize the effective potential, we use a mass-independent renormalization scheme in order
to avoid effects of unphysical IR singularities. We impose the following renormalization conditions
on the effective potential

V (ren)
(

T =0, φ=0,m2
) ∣

∣

m2=µ2>0 = 0, (32)

∂m2V (ren)
(

T =0, φ=0,m2
)
∣

∣

m2=µ2>0 = 0, (33)

∂2
m2V

(ren)
(

T =0, φ=0,m2
)
∣

∣

m2=µ2>0 = 0. (34)

We need precisely these three conditions to remove all the divergences. Imposing these conditions,
we keep in mind that other parts of the effective potential, except for La, have already been
renormalized such that they fulfill these conditions on their own. This leads to

L(ren)
a = LT

a + lim
Λ→∞

[

L(reg)
a (Ma) − L(reg)

a (µ) − (M 2
a − µ2)

∂L
(reg)
a (µ)

∂µ2
−

1

2
(M2

a − µ2)2
∂2L

(reg)
a (µ)

∂(µ2)2

]

= LT
a −

1

128π2

(

3M4 − 4M2µ2 + µ4 − 2M4 ln
M2

µ2

)

. (35)

In terms of these L
(ren)
a and Q

(ren)
a the renormalized effective potential reads

V
(ren)
gHF (φ, T ) =

1

2
m2φ2 +

λ

4N
φ4 − Hφ + L(ren)

σ + (N − 1)L(ren)
π

+
1

2

[

m2
(

Q(ren)
σ + (N − 1)Q(ren)

π

)

− M2
σQ(ren)

σ − (N − 1)M 2
πQ(ren)

π +
λ

N
φ2
(

3Q(ren)
σ + (N − 1)Q(ren)

π

)

]

+
λ

4N

[

3
(

Q(ren)
σ + (N − 1)Q(ren)

π

)2
− 2(N − 1)

(

[

Q(ren)
σ

]2
+ (N − 1)

[

Q(ren)
π

]2
)]

. (36)

C. Vacuum (T = 0)

At T = 0, the quantities under investigation are “experimentally” known1: Mπ(T = 0) = mπ =
139 MeV, Mσ(T = 0) = mσ = 600 MeV, and the pion decay constant φ0 = fπ = 93 MeV. At

T = 0 these known quantities should satisfy Eqs. (16)–(18) with renormalized tadpoles Q
(ren)
a , cf.

Eq. (26),

m2
σ = m2

π +
2λ

N
f2

π +
2(N − 1)λ

(4π)2N

[

m2
π

(

ln
m2

π

µ2
− 1

)

− m2
σ

(

ln
m2

σ

µ2
− 1

)]

, (37)

m2
π = m2 +

λ

N
f2

π +
λ

(4π)2N

[

(N + 2)µ2 + 3m2
σ

(

ln
m2

σ

µ2
− 1

)

+ (N − 1)m2
π

(

ln
m2

π

µ2
− 1

)]

, (38)

H

fπ
= m2 +

λ

N
f2

π +
λ

(4π)2N

[

(N + 2)µ2 + 3m2
σ

(

ln
m2

σ

µ2
− 1

)

+ (N − 1)m2
π

(

ln
m2

π

µ2
− 1

)]

. (39)

1 These values are relevant for the case N = 4.
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In order to make this set of equations consistent, we should put

H = m2
πfπ, (40)

i.e., precisely the same as at the tree level. Then Eqs. (38) and (39) become identical. Now we can
solve for the remaining equations, (37) and (38), and express the renormalized quantities m2 and
λ in terms of physical quantities mπ, mσ, and fπ

λ = N
(

m2
σ − m2

π

)

{

2f2
π +

2(N − 1)

(4π)2

[

m2
π

(

ln
m2

π

µ2
− 1

)

− m2
σ

(

ln
m2

σ

µ2
− 1

)]}−1

, (41)

−m2 = −m2
π +

λ

N
f2

π +
λ

(4π)2N

[

(N + 2)µ2 + 3m2
σ

(

ln
m2

σ

µ2
− 1

)

+ (N − 1)m2
π

(

ln
m2

π

µ2
− 1

)]

.(42)

The expressions manifestly show that the per-
formed renormalization is µ-scale independent
in the vacuum. Indeed, m2 and λ can take any
values depending on the choice of the renormal-
ization scale µ, while the same observables keep
their physical values at any renormalization scale
µ (within a certain range of µ). In this respect,
the gHF approximation is similar to the leading-
order 1/N -approximation, where also both the
NG theorem and scale-independent renormaliza-
tion in the vacuum are fulfilled [19]. The restric-
tion to a certain range is related to the conditions
λ > 0 and m2 < 0 which should be met. At the
scale µ0, determined by the equation

f2
π + (N−1)

(4π)2

(

m2
π ln

m2
π

µ2
0

− m2
π

−m2
σ ln

m2
σ

µ2
0

+ m2
σ

)

= 0, (43)

λ and m2 become singular, cf. Eqs. (41) and
(42). Moreover, µ < µ0 implies m2 > 0 and
λ < 0, which defers a spontaneously broken
phase and makes the theory unstable because
of uncompensated attraction (λφ4 < 0). There-
fore, the range of scale independent renormal-
ization in the vacuum is restricted from below
by

µ > µ0. (44)

The situation is completely different within the
conventional HF approximation. In that case,
physical observables do depend on the renormal-
ization scale and can be reproduced only at a
single value of the scale µ2 = m2

σ/e, as demon-
strated in [19]. The reason of this difference is

that the conventional HF approximation of [19]
violates the NG theorem at H = 0. This stems
from the fact that the equations for the pion self-
energy and the mean field are not identical in the
broken phase and thus leave three nondegener-
ate equations for three quantities m2, λ and µ,
from which the µ value is unambiguously deter-
mined. In our case, this set of equations is degen-
erate, i.e., the equations for the pion self-energy
and the mean field are identical as a consequence
of the fulfilled NG theorem. This gives us free-
dom for an arbitrary choice of µ. Thus, we ar-
rive at an important conclusion which concerns
all partial resummation schemes applied to the
case of spontaneously broken symmetry: a scale-
independent renormalization in the vacuum is
possible only if the scheme preserves the NG the-
orem. This is an important aspect with respect
to possible renormalization-group considerations
for this type of self consistent approximations.

However, the scale dependence still persists
at finite temperature, which is already seen from
the analysis of the symmetry-restoration points.

D. Symmetry Restoration Points at H = 0

Starting from the broken phase, where M 2
π =

0 and φ2 > 0, there exists a temperature range
TR ∈ [T1, T2], cf. Fig. 1 below, where the classi-
cal field vanishes together with the pion mass

M2
π(TR) = φ2(TR) = 0. (45)

This precisely occurs, when the two equations
(17) and (18) reduce to a single one. Solving
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for this single equation with renormalized Q
(ren)
a

tadpoles (26) gives

T 2
R =

12

(N + 2)

[(

1 +
3

(N − 1)

M2
σ(TR)

m2
σ

)

f2
π

+
3m2

σ

(4π)2

(

ln
m2

σ

µ2
− 1

)(

1 −
M2

σ(TR)

m2
σ

)]

, (46)

where we have used Eqs. (41) and (42) to ex-
press m2 and λ in terms of the vacuum mass
mσ. Strictly speaking, this is not a solution for
TR, since the r.h.s. of (46) still depends on TR

through M 2
σ(TR). Nevertheless, this expression

is already quite simple to analyze.

The lower bound T1 of condition (45) is of
central importance for the phase transition in
the conventional HF-approximation [1] but of
minor relevance in the gHF-scheme, since it cor-
responds to the metastable solution, cf. Sect. IV
below. It is determined if simultaneously also
M2

σ = 0 occurs

T 2
1 =

12

(N + 2)

[

f2
π +

3m2
σ

(4π)2

(

ln
m2

σ

µ2
− 1

)]

. (47)

It is still µ-dependent, in spite of the scale-
independent renormalization in the vacuum. At
large µ, i.e., above some µ1, T 2

1 can even become
negative, which means that then this solution
does not exist.

For the stable solution of the gHF approxima-
tion it numerically occurs that Mσ(TR) ≈ mσ, cf.
Ref. [1] and Sect. IV below. This almost removes
the Mσ(TR) dependence from the r.h.s. of Eq.
(46) and makes the corresponding temperature
T2 almost µ-independent

T 2
2 '

12

(N − 1)
f2

π . (48)

This value coincides with that of the naive renor-
malization [1]. The solution T2 corresponds to a
partial symmetry restoration, since here we still
have Mσ(T2) 6= Mπ(T2) in spite of φ = 0.

IV. RESULTS FOR N = 4

For the numerical calculations we use the fol-
lowing parameters: mσ = 600 MeV and fπ =
93 MeV. The pion mass is either zero, mπ = 0,

in the case of exact symmetry, or mπ = 139 MeV
for the approximate symmetry. The general
structure of the solutions to the renormalized
Eqs. (16)–(18) is similar to that obtained with
the naive renormalization [1] but with extra
complications caused by the additional depen-
dence on the renormalization scale µ. According
to Eq. (43) physically reasonable solutions exits
only for µ > µ0, where µ0 as the solution of Eq.
(43) equals ' 200 MeV for the above specified
parameters.

There are several different branches of the so-
lution. Stable and physically meaningful are de-
termined by the principle of maximum pressure,
the pressure being given by the effective poten-
tial (36)

P = −V
(ren)
gHF (φ, T ) + const. (49)

Here the constant is determined by the condition
that the pressure should vanish for the physical
vacuum, i.e., in the spontaneously broken phase,
while our renormalization condition (32) deter-

mines V
(ren)
gHF to be zero in the unphysical, sym-

metric vacuum.

A. Exact O(4) Symmetry

The actual structure of the solution depends
on the renormalization scale µ. We start with a
moderate scale µ = 600 MeV, i.e., of the order
of mσ. The results are presented in Figs. 1–5.

In the narrow temperature range, displayed
in Fig. 1, the results are qualitatively similar
to those obtained with the naive renormaliza-
tion [1]. The stable branch starts at T = 0
from the physical vacuum values for the masses
and the classical field and crosses the metastable
branch at Tcross ≈ 440 MeV. In terms of the
pressure, they are touching rather than cross-
ing (see Fig. 2). Therefore, no transition from
one branch to another occurs at Tcross. In the
broken-symmetry phase, the pion mass equals
zero. Then a phase transition of the second or-
der occurs at T2 ' 180 MeV, at which the field
becomes zero (see Fig. 3). However, the π and
σ masses still differ beyond this transition point.
They become equal only after a second phase
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FIG. 1: Meson masses as functions of temperature
for µ = 600 MeV and mπ = 0 case. Stable branch is
presented by solid lines, whereas the metastable one
– by dashed lines.
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FIG. 2: The same as in Fig. 1 but for the pressure
difference between stable and metastable branches.

transition, which is also of second order, at Tcross.
Note that the equal-mass solution above Tcross is
precisely the same as in the conventional HF ap-
proximation (cf. Refs. [13, 19]), since the gap-
less modification term (9) vanishes in this case.
The T1 point proves to be irrelevant for the sta-
ble branch. Rather it is the starting point for
the metastable branch, which in the range of
T1 < T < Tcross precisely coincides with the
solution of the conventional HF approximation
[13, 19]. The corresponding field is always zero
for this branch. Contrary to the case of the naive
renormalization [1], this metastable branch ends
at some temperature (≈ 650 MeV).

However, in the wider temperature range,
displayed in Fig. 4, we see a significant difference
from the results obtained with the naive renor-
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FIG. 3: The same as in Fig. 1 but for the field φ.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

      

 0  0.2  0.4  0.6  0.8  1
M

π 
/ σ

 [G
eV

]

T [GeV]

mπ=0

T1 T2 Tcross

σ=π

σ

π

σ=π

σ

π

FIG. 4: Meson masses of Fig. 1 but in wider tem-
perature region. The upper metastable branch is dis-
played by the long-dashed line.

malization [1]. Neither stable nor metastable so-
lutions exist above a certain temperature Tend

which is ≈ 1.15 GeV for the considered µ =
600 MeV. Let us remind that this solution above
Tcross corresponds to the conventional HF ap-
proximation. Therefore, it is precisely the same
as in previous conventional HF calculations with
renormalization [13, 19]. The occurrence of such
an end point in the HF approximation was first
pointed out by Baym and Grinstein [5].

At Tend, the stable branch of the solution
joins the upper branch. This upper branch at
any temperature corresponds to equal masses
and zero field, i.e., Mπ = Mσ and φ = 0, and
hence is also a solution to the conventional renor-
malized HF approximation. It starts with very
high values of masses (≈ 3 GeV) in the vacuum
and also ends at Tend. The vacuum pressure for
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for µ = 1200 MeV and mπ = 0 case. Stable branches
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by dashed lines.

this branch, evaluated according to Eq. (49), is
rather high (see Fig. 5).

It is important note that for the upper
branch and at temperatures near the endpoint
the logarithmic terms in the gap equation, ∝
ln(M2

π/σ/µ2), become large. This indicates that
at such points the expansion of the Φ func-
tional in powers of the renormalized coupling be-
comes unreliable, because the effective coupling
becomes large. Therefore we consider the up-
per branch not a physically meaningful solution.
The same holds true for temperatures close to
the endpoint temperature. Such a behavior must
be expected for any effective theory and was in-
deed also observed in Quantum Hadro Dynamics
(QHD) in [15].

At larger renormalization scales, µ, the global
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FIG. 7: Zoomed low-temperature region of Fig. 6.
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FIG. 8: The same as in Fig. 6 but for the field φ.

pattern of the solution remains qualitatively sim-
ilar, as seen from Fig. 6. Only Tcross and Tend

move to higher temperatures. Inspecting the
low-temperature region in more detail, cf. Fig.
7, we see that a new metastable solution, which
ends already at rather low temperature, appears.
This new solution has a nonzero field (Fig. 8)
but violates the NG theorem. In addition the
metastable solution, which before started at T1,
now begins at zero temperature, since at µ = 1.2
GeV we have already T 2

1 < 0, cf. Eq. (47).

If we take a low value for the scale µ, the
structure of the stable solution becomes more in-
volved, see Figs. 9–11. In the broken-symmetry
sector we still have a massless pion and a nonzero
field, see Fig. 10. However, at higher tempera-
tures the metastable branch, displayed by the
dotted line, reveals back-bending. This back-
bended part of the branch turns out to be the
most stable one, see Fig. 11. As a result we
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arrive at a complicated structure for the stable
solution, where even the pressure turns out to
be discontinuous.

A common feature for all scales is that
the point of the first phase transition, T2 '
180 MeV, is approximately µ-independent and
has about the same value as that in the naive
renormalization scheme [1]. At the same time,
the point of the second phase transition, Tcross,
and the end point of the stable solution, Tend,
are essentially µ-dependent.

B. Approximate O(4) Symmetry

In the case of explicitly broken symmetry
(mπ = 139 MeV), the structure of solutions
at various µ scales is similar to that described
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FIG. 11: The same as in Fig. 9 but for the pressure.

above for the chiral limit. Even the behavior
of metastable branches remains similar. We il-
lustrate the changes on the example of µ =
600 MeV, see Figs. 12–14 which looks the most
physically appealing and is close to results of the
naive renormalization [1]. The main difference
from the mπ = 0 case is that the sequence of
two phase transitions is transformed here into a
smooth cross-over transition.
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FIG. 12: Meson masses as functions of temperature
for µ = 600 MeV and mπ = 139 MeV case. Sta-
ble branches are presented by solid lines, whereas
metastable ones – by dashed lines.

V. CONCLUSION

We have studied a renormalized version of
the gapless Φ-derivable HF approximation to the
λφ4 theory with spontaneous breaking of the
O(N) symmetry, proposed in Ref. [1]. This gHF
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approximation simultaneously preserves all the
desirable features of Φ-derivable approximation
schemes (i.e., the validity of conservation laws
and thermodynamic consistency) and respects
the NG theorem in the phase of spontaneously
broken symmetry. This is achieved by adding a
correction ∆Φ to the conventional Φ functional.
The nature of this correction can be understood
as follows. The conventional Φ-derivable HF
approximation cuts off an infinite series of dia-
grams, among which are those providing the NG
theorem in the phase of spontaneously broken
symmetry. By introducing the ∆Φ correction
to the HF approximation we take into account
a part of those omitted diagrams (at the level
of the actual approximation), which restores the
NG theorem.

An advantage of the gHF approximation is
that it allows for scale-independent renormaliza-

tion in the vacuum, unlike the conventional HF
approximation [19]. The scale independence in
the vacuum is a direct consequence of the NG
theorem, which makes the equations for the pion
self-energy and classical field degenerated. How-
ever, even in the gHF approximation, only renor-
malization scales higher than a certain value (µ0,
cf. Eq. (43)) are allowed, in order to ensure sta-
bility of the renormalized approximation.

Nevertheless, the scale dependence still per-
sists at finite temperatures. The violation
of renormalization-scale independence of Φ-
derivable approximations was shown in [23, 24]
from the point of view of the renormalization-
group β function. There the β function, eval-
uated from the Φ-functional formalism, was
shown to deviate from its perturbative expan-
sion, beginning at orders in the expansion pa-
rameter, higher than that explicitly taken in the
Φ functional. The reason is the violation of
“crossing symmetry” in the sense of [14]: Solv-
ing the self-consistent equations of motion cor-
responds to a partial resummation of diagrams
to any order in the expansion parameter (e.g.,
the coupling constant λ or ~, i.e., the order of
loops in perturbative Feynman diagrams) which
is necessarily incomplete for any truncation of
the Φ functional.

Within our renormalization scheme, it be-
comes clear that the renormalization-scale de-
pendence at finite temperatures originates from
the subtraction of the “hidden subdivergence” of
the four-point function inside the self-consistent
tadpole loop. As shown in [14], this four-point
function consists of a resummation in only one
channel, and thus the β function of this re-
summed four-point function deviates from the
correct one at orders higher than contained in
the approximation of the Φ-functional, i.e., to
O(λ2).

At large scales (µ & mσ) the chiral phase
transition proceeds similar to that in the naive
renormalization scheme [1]. In the case of the
exact O(N) symmetry, it proceeds through a
sequence of two second-order phase transitions
rather than a single one. In the first transition
the mean field vanishes but the meson masses
still remain different. The temperature of this
phase transition, T2 ' 180 MeV, is approx-
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imately µ-independent and has approximately
the same value as that in the naive renormal-
ization scheme [1]. In the second transition also
the masses become equal, and the O(N) symme-
try is completely restored. The corresponding
temperature, Tcross, turns out to be essentially
µ-dependent. When the O(N) symmetry is ex-
plicitly violated, the sequence of two phase tran-
sitions is transformed into a smooth cross-over
transition. Moreover, at µ ' mσ the results are
even qualitatively close to those obtained with
the naive renormalization [1]. At small scales
(say µ . mσ/2), the phase structure becomes
very complicated, however still respecting the
NG theorem in the phase of spontaneously bro-
ken symmetry.

Another result concerns both the conven-
tional renormalized HF and gHF approxima-
tions, which in fact are identical in the phase
of restored O(N) symmetry. There exists an
end point of the solution, i.e., a temperature
Tend above which there are no solutions to the
gap equations. The occurrence of such an end
point in the HF approximation was first pointed
out by Baym and Grinstein [5] and is caused
by the dominant role of ln(M 2/µ2) terms in the
gap equations, which originate from the renor-
malization procedure. The dominant behav-
ior of the ln(M 2

π/σ/µ2) terms signals a break-
down of the HF approximation and the need
to include higher-order corrections into the Φ
functional [5]. Another interesting question is
whether one can find a renormalization-group
improved Φ-derivable approximation to cure this
problem. We have found that at low scales (like
µ . mσ/2), the end point appears at rather low
temperatures, leaving almost no room for the HF
(as well as gHF) approximation in the phase of
restored O(N) symmetry. At the same time, at
(µ & mσ), the end point moves to rather high
energies Tend & 1.2 GeV, hence allowing this ap-
proximation at least at T . 1 GeV.

Summarizing, we have found that the gHF
approximation is certainly advantageous as com-
pared to the conventional HF one, since it

respects the NG theorem and allows scale-
independent renormalization in the vacuum.
These properties are closely interrelated. They
both require that the set of equations of mo-
tion are degenerate in the phase of spontaneously
broken symmetry. Nevertheless, there still are
serious problems with the renormalization of Φ-
derivable approximations for a theory with a
spontaneously broken symmetry. At finite tem-
peratures the predictions of renormalized gHF
approximations essentially depend on the renor-
malization scale, contrary to the case of the
renormalized perturbation theory. In this re-
spect, the gHF approximation becomes similar
to the leading-order 1/N -approximation, where
also both the NG theorem and scale-independent
renormalization in the vacuum hold true [19].
However, in view of the medium-independent
renormalization performed in accordance with
Refs. [13, 14, 16], this scale-dependence at fi-
nite temperatures cannot be already interpreted
as an artifact of temperature-dependent counter
terms. It may turn out that this scale depen-
dence is a consequence of triviality of the λφ4

theory [25] which, when it is renormalized, there-
fore requires an external scale to serve for a scale,
below which it can be used as an effective field
theory to describe the low-energy phenomenol-
ogy.
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