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The Lindblad equation, as one approach to open quantum systems, describes the density matrix
of a particle or a chain of interacting particles, which are in contact with a thermal bath. Still, it
is not fully understood yet, how arbitrary systems evolve towards a stationary distribution, which
guarantees thermalization in a thermodynamical context, and how to systematically incorporate the
variety of assumptions that are made in this approach in order to preserve thermal Gibbs states.
Despite these shortcomings, Lindblad dynamics was successfully employed in heavy-ion physics
(quarkonia) and also became of interest in quantum-computer applications.

In this paper, we consider a problem borrowed from heavy-ion collisions, namely the formation of
bound states, as for example the deuteron, in the non-relativistic regime by using the already well
understood techniques of Lindblad dynamics. However, only recently, we were able to extend this
toolbox by showing, that the position-space Lindblad equation can be reformulated in terms of a
diffusion-advection equation with sources and therefore provides a hydrodynamical formulation of
a dissipative quantum master equation. Making use of this advanced machinery and insights, we
describe the possible formation of a bound state, which is realized by a Pöschl-Teller-like potential,
of a particle in interaction with a heat bath in a 1-dim setting. We analyse the possibility of
a thermalization and the time-scale of the formation, population and depopulation of the bound
state. Finally, we also show an example of a much deeper potential, where we allow for three bound
states, just in the spirit of quarkonia. Besides this, we discuss general aspects of open quantum
systems, like decoherence, entropy production etc.

Keywords: Lindblad equation, open quantum systems, computational fluid dynamics, bound state formation,
formation time, thermalization, decoherence

I. INTRODUCTION

Open quantum systems are understood as quantum
systems which are not (perfectly) isolated from their en-
vironment. Isolating a system, and therefore excluding
any interaction with a (thermal) environment is a highly
challenging task of experimental physics, but has major
relevance. The most prominent example of how impor-
tant it is to minimize the system-bath interaction is cur-
rently given by the field of quantum computing [1]. In
contrast to the question, how to isolate the system, one
can also ask how a quantum system can be influenced in
a systematized way by a thermal environment Refs. [2, 3].

A. Open quantum systems in heavy-ion collisions

A particularly interesting field of research for open
quantum systems is nuclear and high-energy physics.
Both are investigated in heavy-ion collisions [4–10]: in
heavy-ion collisions, energies far above the freeze-out
temperature, which is given by approximately 60 − 150
MeV (depending on the collision energies probed in large
systems like Au+Au or Pb+Pb)[11, 12], are reached.
Colliders, such as the LHC at CERN or the RHIC at
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BNL focus on the measurement of the matter which is
produced at the collision energy regime of

√
s = 2.4 GeV

−13000 GeV. Therefore, while cooling – even at high
energies – bound states such as heavy quarkonia (J/ψ,
Υ and excited states), but also the (anti-)deuteron are
probes for the medium of strongly interacting matter un-
der extreme conditions [13]. The typical deuteron yields
at collision energies of

√
sNN = 2.76 TeV of Pb-Pb col-

lisions with 0-10% centrality are dN/dy ≈ 10−1 [13, 14]
and therefore a phenomenologically remarkable finding:
the typical binding energy of the deuteron is ∼ 2.3 MeV,
which is orders of magnitude below the hadronic chemical
freeze-out temperature of ∼ 155 MeV. In the literature,
several attempts have been made to describe this phe-
nomenon as a collective effect which appears either by
coalescence [15–21] or may be caused by n-body colli-
sions [22–24].

Also we have tried to provide a better description and
understanding of this effect: In Ref. [25], we have intro-
duced a very basic potential, which mimics a bound state
in one dimension. This potential was chosen because it
represents the most simple potential which causes bound
states, in contrast to the very elaborated approaches,
which are assumed to be relevant in heavy-ion collisions,
such as for example the BONN potential [26]. We used
this toy model to investigate the probability of the pop-
ulation or depopulation of a particle obeying a potential
bound state which interacts with a single pulse or a chain
of pulses. From our results we concluded, that the bound
state is formed immediately during the interaction, but
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the energy spectrum pf the particle is dependent on the
strength and range of the interacting potential.

In fact, this interaction rate can not be simulated by
one pulse or a chain of pulses properly, because the sys-
tem interacts all the time with its environment, and the
bath has to follow more advanced constraints, which are
usually adjusted to a Ohmic frequency spectrum. How-
ever, there are various descriptions for system-bath in-
teractions, depending on the strengths of these interac-
tions, their spectra, their temperatures and their energy
regimes.

One way to realize a temporally continuous interaction
with an environment is to couple the system of interest,
whether it is a single particle or a molecule, to an (in-
finite) number of surrounding particles, representing an
Ohmic heat bath. Since these particles are typically as-
sumed to be lighter, one can approximate their interac-
tion with the system in terms of “classical springs”. This
model has been introduced by Feynman and Vernon [27]
and later exemplified by Caldeira and Leggett [28].

In this work, we will use the so-called Caldeira-Leggett
model, in form of a Lindblad equation, to describe this
setup and discuss the formation of bound states, assum-
ing a system particle in a Pöschl-Teller potential with
parameters motivated from nuclear physics.

B. Goal of this work

In this work we investigate the formation of quantum
bound states with energies which are typical for heavy-
ion collisions. As motivated in Section IA, a physical
system, which itself is part of a many body system is for
example a deuteron with a binding energy much lower
than the energy of the surrounding system.

Therefore, we introduce a potential, which is a modi-
fied version of the one, we have introduced in Ref. [25],
namely a Pöschl-Teller potential within a square-well po-
tential. This can be understood as follows: the Pöschl-
Teller part of the potential is used to mimic a bound state
and can be adjusted such, that either only one bound
state is generated, or a higher number of bound states.
In our case, we adjust the potential to the binding energy
of the deuteron (we are also going to discuss a scenario
with more bound states). The square-well potential is
introduced to identify discrete and normalizable energy
eigenstates, and therefore a full set of eigenvectors in a
(truncated) Hilbert space and can be interpreted as the
size of the fireball in a heavy-ion collision.

We employ this potential, to use several formulations
of the Lindblad equation and to investigate the forma-
tion or destruction time of a bound state and to treat
thermalization in terms of Boltzmann-like statistical dis-
tributions. We find, that for various regimes and various
parameters thermalization is reached (up to small nu-
merical discrepancy) and the equilibration time is usu-
ally dependent on the temperature of the heat bath and
the damping coefficient, as well as the cut-off frequency

of the Ohmic heat bath spectrum.
We employ a new method [29], known from hydrody-

namics, to compute the reduced density matrix ρ(x, y, t)
at arbitrary times towards equilibration, following Lind-
blad dynamics. As a consequence, we can directly tackle
the questions of thermalization and thermalization time.
To use these (numerical) tools, it is necessary to refor-
mulate the Lindblad equation into a conservative form
and separate the real part of the reduced density matrix
from the imaginary part.
Furthermore, we use ρ(x,−x, t = teq) and ρnn(t)

1, the
corresponding occupation number, in order to clarify the
question about thermalization and calculate the entropy
and purity of the system to know, at which time the
system thermalizes.2 This analysis is worked out for var-
ious heat bath temperatures T , damping coefficients γ
and initial conditions, as well as for different types and
formulations of the Lindblad equation.
In this context, the entropy,

S(t) = −Tr[ρ(t) ln ρ(t)] ,

and purity,

P (t) = Tr[ρ2(t)] ,

of the system are obtained by diagonalizing the reduced
density matrix. At the same time, this allows us to
discuss the effective eigenfuntions of the system-plus-
reservoir Hamiltonian to answer the question of how a
previously bound state is modified after interacting with
the environment.
Studying the entropy of the full system and the occu-

pation numbers of the states enables us to compare the
time scales of the formation or destruction of the bound
state to the equilibration of the full system, which will
turn out to be different depending on the initial con-
dition. Among other results, it turns out, that higher
states tend to equilibrate faster than energetically lower
states.3 Furthermore, Refs. [30, 31] argued, that the in-
teraction with the heat bath can lead to a modification
of the wave functions and as a consequence the energy

1The matrix coefficients ρmn(t) are calculated via projection
on the initial wave functions ψn(x) of the considered system,

ρnm(t) =

∫ L

−L
dx

∫ L

−L
dy ρ(x, y, t) ⟨ψn|x⟩ ⟨y|ψm⟩ . (1)

2In this context the terminus thermalization means, that the
stationary case is a Gibbs state and is described by a Boltzmann-
distribution,

pi = exp

[
−
Ei − µ

T

]
.

3In this work, the equilibration of a certain state is the minimal
time, where ∂tρnn = 0 and the equilibration time of the full system
is the minimal time, where ∂tS(t) = 0. It turns out, that both time
scales can differ.
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eigenvalues under certain conditions. This calls for clari-
fication: Are there mode shifts, and are they of sufficient
strength to lead to a unbinding of a previously bound
state? We answer this question by calculating the wave
functions of the thermalized effective Hamiltonian.

C. Structure

We start in Section IIA with a recapitulation of our
findings from Ref. [29] - the fluid-dynamical reformula-
tion of the Lindblad equation. This helps for a proper
understanding of the applicability of the Lindblad equa-
tion, and the mathematical meaning of each of the diffu-
sion coefficients. In Section III we briefly recapitulate the
corresponding new numerical method for solving Lind-
blad equations. In Section IV we discuss the mathemat-
ical framework, which is implemented into the scheme
to finally tackle the question, how bound states can be
described within the Lindblad approach. This makes up
the main part of this work and treats the question of
thermalization, formation time and dependence on the
initial condition, damping constant, diffusion parameter,
and the heat bath temperature. We also briefly tackle
the question of how a system with more than one bound
state thermalizes. In Section IV we summarize our work
and present future directions of research.

D. Conventions

We work on nuclear scales and set the mass to the
reduced mass of a deuteron, m = mred,d = 470 MeV,
and ℏ = kB = 1. The computational domain is set to
L×L = 40×40 fm2, which is, if not explicitly mentioned
divided into 300 × 300 cells to discretize the system for
numerical evaluations.4

II. THE LINDBLAD EQUATION

In the previous section, we introduced our basic mo-
tivation to investigate Lindblad dynamics using the
Caldeira-Leggett model. In Ref. [29] we have given a
phenomenological introduction of the basic nature and
the assumptions, that are made to obtain the Lindblad
equation from the basic Hamiltonian, which has been in-
troduced in Ref. [27] to describe a system interacting with
a heat bath,

Ĥ = ĤS + ĤB + ĤSB . (2)

4Even though we are considering a one-dimensional quantum
system, cf. Ref. [25], the density matrix formalism leads to a two-
dimensional problem in coordinate space, ρ(x, y, t).

Here, S denotes the system of interest, B the environ-
ment (thermal heat bath), which remains in thermal
equilibrium during the described process, and SB the in-
teraction between the system and the heat bath. Sys-
tems, which include dissipation can not be described by
a Schrödinger or a von-Neumann equation, because these
equations are symmetric in time. Therefore, a possibility
to describe such systems is provided by the application
of phenomenological equations such as Fokker-Planck or
Langevin equations, which explicitly break the time sym-
metry [32]. One possible observable is provided by the
density matrix, which for closed quantum systems fulfils
the von-Neumann equation,

ρ̇ = −i[Ĥ, ρ] . (3)

To extend this equation to take system-bath interactions
into account, the first assumption is that the bath and
the system are uncorrelated at some initial time t0. This
allows to describe the entire framework at t = 0 by the
product state

ρT = ρ⊗ ρB, (4)

where ρB = e−βĤB/Z with Z = Tr e−βĤB , and ρT is
the total density matrix, which describes the dynamics
of both, system and environment, which together form
a closed quantum system. We consider the Caldeira-
Leggett model, where

ĤB + ĤSB = (5)

=

N∑
α=1

[
p̂2α
2Mα

+
1

2
MαΩ

2
α

(
x̂α − cα

MαΩ2
α

x̂

)2
]
,

ĤS =
p̂2

2M
+ V (x̂) , (6)

where we choose a coordinate-space representation as in-
troduced in Refs. [3, 28]. Thereby, the x̂α refer to the
bath degrees of freedom, while x̂ belongs to the system.
Here, N withN → ∞ denotes the number of surrounding
particles, which are coupled via “springs” to the system,
while not interacting among each other. Assuming, that
the damping is weak [33], and the process is Markovian
[3, 28], Caldeira and Leggett showed that

˙̂ρ =− i
[
ĤS , ρ̂S

]
− iγ [x̂, {p̂, ρ̂S(t)}] + (7)

− 2mTγ [x̂, [x̂, ρ̂S(t)]] ,

which is known as the Caldeira-Leggett master equation
(CLME). It is assumed, that γ = η/2m is the character-
istic damping rate of the system, while η is the friction
coefficient [28].
In the case of the harmonic oscillator with frequency ω,

the heat bath temperature is T ≫ ω and the coherence
length pertaining to the state ρnn has to be greater then
λdB = 1√

4MT
, the de-Broglie wave length. If this is not

the case, the CLME is known to violate the positivity of



4

ρ, especially, because the CLME in this form is only valid
at high temperatures [30, 31].

Meanwhile, the Lindblad equation, which is a
structure-wise similar master equation, preserves the
conservation of the norm and obeys the positivity con-
dition per construction [34]. The general form of the
Lindblad-Gorini-Kossakowski-Sudarshan equation,

L [ρ̂S ] = (8)

= −i
[
ˆ̃H, ρ̂S

]
+
∑
i,j=1

(
L̂iρ̂SL̂j −

1

2

{
L̂†
i L̂j , ρ̂S

})
,

contains L̂i Lindblad operators, whose choice is “guided
by intuition” [35] and possibly can be as diverse as tran-
sitions are allowed in the systems´ [36]. On the other
hand, there are recent discussions about the systematic
derivation of these operators, cf. Refs. [37, 38].

Regarding Eq. (8), we have to point out that there
is a large variety of master equations in the literature,
which obey Lindblad form and therefore can be called
Lindblad equation. Eq. (8) is simply the most general
form of a Lindblad equation [3]. However, the Lindblad
operators Li can in general be different for every system
under consideration, time dependent, and also dependent
on the eigenstate to which the i-th operator is related to
[36].

The most general CLME in Lindblad form reads

˙̂ρS =− i
[
ĤS , ρ̂S

]
− iγ [x̂, {p̂, ρ̂S(t)}] + (9)

−Dpp [x̂, [x̂, ρ̂S(t)]] + +2Dpx [x̂, [p̂, ρ̂S(t)]] +

−Dxx [p̂, [p̂, ρ̂S(t)]] ,

with (hypothetically time dependent) coefficients Dpp,
Dxp = Dpx and Dxx, which are derived in different lim-
its and for the temperature of the bath in various ways.
However, in our work we will consider these coefficients
to be constant.

The position-space representation of Eq. (9) is given
by

i
∂

∂t
ρ(x, y, t) = (10)

=

[
1

2m

(
∂2

∂y2
− ∂2

∂x2

)
+ V (x)− V (y)+

−iDpp(x− y)2 − iγ(x− y)

(
∂

∂x
− ∂

∂y

)
+

−2Dpx(x− y)

(
∂

∂x
+

∂

∂y

)
+

+iDxx

(
∂

∂x
+

∂

∂y

)]
ρ(x, y, t) ,

that we use for this work to describe the Lindblad dy-
namics of our systems of interest, cf. [3, 29–31, 35].

In particular, we use the following damping coefficients
Dpp, Dpx and Dxx = 0.

Dpp = 2mγT (11)

Dpx =

{
−γT

Ω [3] ,
Ωγ
6πT [39] ,

(12)

Dxx = 0 [29]. (13)

Here, Ω is the cut-off frequency of the Ohmic heat bath, T
the temperature of the heat bath, m the (reduced) mass
of the system particle and γ the damping coefficient.5

In order to study this position space version of Eq. (8)
We have implemented a numerical method, which, to our
knowledge has not been used to describe Lindblad dy-
namics before, but turns out to be a highly reliable and
efficient tool. This method has been successfully tested
and is discussed in detail in Ref. [29] and is based on the
code presented in [42].
Hence, next we present the reformulated form of the

Lindblad equation as an advection-diffusion-type equa-
tion and then comment on the specific numerical imple-
mentation in Section III.

A. The Lindblad equation as an advection-diffusion
equation

In Ref. [29], we have rewritten the Lindblad equation
Eq. (10) into an advection-diffusion equation in conserva-
tive form. Usually, the conservative form refers to a con-
servation low, which is satisfied by these types of equa-
tions. For us, this is the norm of the density matrix,
Tr ρ̂ =

∫
dx ρ(x, x, t) = 1 that is conserved by construc-

tion for Lindblad equations. Splitting the density matrix
into real and imaginary parts, rearranging the terms and
performing integrations by parts, cf. Ref. [29], we can
rewrite Eq. (10) into

∂tu⃗+ ∂xf⃗
x[x⃗, u⃗ ] + ∂y f⃗

y[x⃗, u⃗ ] = (14)

= ∂xQ⃗
x[∂xu⃗, ∂yu⃗ ] + ∂yQ⃗

y[∂xu⃗, ∂yu⃗ ] + S⃗[t, x⃗, u⃗ ] .

Here, u⃗ = u⃗(x⃗, t) = (ρI(x, y, t), ρR(x, y, t))
T is a vector

that contains the imaginary- and real part of the density
matrix and plays the role of a two-component fluid field.

The so-clled advection and diffusion fluxes f⃗x,y, Q⃗x,y and

the source term S⃗ are given by

f⃗x[x⃗, u⃗] = (15)

=

(
−2Dpx (x− y) ρR + γ (x− y) ρI
+2Dpx (x− y) ρI + γ (x− y) ρR

)
,

f⃗y[x⃗, u⃗] = (16)

5This parametrization was derived in [3, 28, 40]. Furthermore,
in [41] we have shown, that in order to satisfy norm conservation,
the spatial diffusion of the density matrix in a finite sized spatial
domain has to be zero. This is also feasible, because this term was
not introduced by the original work of Caldeira and Leggett.
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=

(
−2Dpx (x− y) ρR − γ (x− y) ρI
+2Dpx (x− y) ρI − γ (x− y) ρR

)
,

Q⃗x[∂xu⃗, ∂yu⃗] = (17)

=

(
∂
∂x

[
1

2m ρR +Dxx ρI
]
+Dxx

∂
∂y ρI

∂
∂x

[
− 1

2m ρI +Dxx ρR
]
+Dxx

∂
∂y ρR

)
,

Q⃗y[∂xu⃗, ∂yu⃗] = (18)

=

(
∂
∂y

[
− 1

2m ρR +Dxx ρI
]
+Dxx

∂
∂x ρI

∂
∂y

[
1

2m ρI +Dxx ρR
]
+Dxx

∂
∂x ρR

)
,

S⃗[t, x⃗, u⃗] = (19)

=

(
(V (y)− V (x)) ρR +

[
2γ −Dpp (x− y)2

]
ρI

(V (x)− V (y)) ρI +
[
2γ −Dpp (x− y)2

]
ρR

)
.

Note that the equation is now formulated entirely in
terms of real quantities, which is conceptually similar to
the hydrodynamical formulation of quantum mechanics,
such as it was investigated by the Madelung equations for
the wave function [43] and later widely discussed in vari-
ous literature [44, 45]. Even today it is a topic of interest
in theoretical physics [46–48]. A detailed comparison of
our formulation to these works is however postponed to
future work.

In Ref. [29], we have shown, that this form indeed al-
lows a mathematical interpretation of the Lindblad equa-
tion in terms of the general expression of an advection-
diffusion equation with sources and sinks,

∂
∂t ξ = ∇⃗ ·

(
D ∇⃗ ξ − v⃗ ξ

)
+ S(ξ) . (20)

Here, ξ is usually some concentration, temperature or
fluid density, D the diffusion coefficients, v⃗ the field ve-
locity, and S is called the source term related to sources
or sinks of ξ. In our case, ξ = u⃗, the vector of the real
and imaginary parts of the probability density (matrix).
Note here, that the “source term” is also dependent on
the density matrix itself, which makes it unclear to inter-
pret this term as being a pure source or sink. Introducing
such a new perspective on a dissipative quantum master
equation, we have to briefly discuss the density matrix
ρ(x, y, t) as a “hydrodynamical quantity”. Therefore, it
is crucial to comment on the meaning of the real and
imaginary parts of the density matrix, as two coupled
quantities in Eq. (20).

For this purpose it is better to rewrite Eq. (14) in
terms of centre-of-mass and relative coordinates, r ≡
1
2 (x − y) and q ≡ 1

2 (x + y), with density matrix ˜⃗u =
(ρ̃R(r, q, t), ρ̃I(r, q, t)). Then the Lindblad equation in
the separated form reads

∂t ˜⃗u = (21)

=

[(
Dxx 0
0 Dxx

)
∂2q +

(
γ 0
0 γ

)
∂r +

−4

(
Dpp 0
0 Dpp

)
r2
]
˜⃗u+

+

[(
0 1

2m
− 1

2m 0

)
∂q∂r + 4

(
0 Dpx

−Dpx 0

)
r∂q +

+

(
0 V (r − q)− V (r + q)

V (r + q)− V (r − q) 0

)]
˜⃗u ,

We divided the Lindblad equation into two parts, sep-
arated by the two square brackets, a symmetric and an
antisymmetric part. The second one is the von-Neumann
part, with an additional term proportional to Dpx. This
antisymmetric part has the structure of a von-Neumann
or Schrödinger equation, because it mixes the real and
imaginary parts in the differential equation. It depends
on the relative coordinate r as well as the derivative with
respect to the centre-of-mass coordinate q.6

In the first parentheses, the symmetric part, we have
separated the terms proportional to the diffusion coeffi-
cients Dxx, Dpp, and the damping γ. Note, that only
the Dpp term has been originally derived by Caldeira
and Leggett [28]. This term can indeed be interpreted
as being proportional to momentum diffusion, because
it depends on the relative coordinate, and therefore, the
smaller r gets, the more momentum diffuses. If one solely
studies this term, it has the solution

˜⃗u(r, t) = ˜⃗u0 exp(−4Dppr
2t) , (22)

which shows, that for higher values of the relative co-
ordinate the suppression rate at these points is larger,
which corresponds to momentum diffusion and therefore
leads to faster diagonalization of the density matrix (i.e.
decoherence).

The first term is an ordinary diffusion equation, which
leads to spatial diffusion along the diagonal of the density
matrix (q-direction).

The γ−term depends on the derivative of the relative
coordinate r. It does not mix the real and imaginary
parts of ˜⃗u, because the matrix entries are only diagonal.
This part can be solved for example with the method
of characteristics, cf. Ref. [50], and is a plain advection
orthogonal to the diagonal.

To summarize, we demonstrated, that reformulating
the Lindblad equation, as given in Eq. (10), we are en-
abled to provide a better interpretation of its structure in
terms of both the real and imaginary part of the density
matrix. We have seen, that the Lindblad equation can be
separated in symmetric and antisymmetric parts, where
the antisymmetric part is mixing the real and imaginary
parts of the density matrix, while the symmetric parts
do not. Next, we make use of this formulation to apply
modern numerical methods from the field of computa-
tional fluid dynamics.

6At this point it is appealing to relate Eq. (21) to space-
momentum correlations, and therefore, to rewrite Eq. (21) in terms
of the Wigner transform. This might provide deeper a insight into
the physical meaning of the density matrix in terms of the proba-
bility distribution in the phase space [49].
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FIG. 1. The wave functions of a Pöschl-Teller potential,
Eq. (24), of the first seven energy eigenstates with parame-
ters α = 1.45 fm−1 and V0 = 16.5 MeV, calculated with a
standard shooting method. The dashed black line refers to
the potential, which is rescaled for better illustration.
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FIG. 2. The first 20 energy eigenvalues of the wave functions
from Fig. 1, following the parameters also introduced in Fig. 1.
Notice, that for n = 0 the eigenvalue is negative, namely −2.3
MeV.

III. NUMERICAL METHOD

In this section, we briefly introduce the numerical
method, which we apply in order to solve the Lindblad
equation. This is detailed in Ref. [29], where also the
boundary conditions and the implementation of the Lind-
blad equation are discussed. Let us mention here, that
the method we are using belongs to the large variety of
finite-volume methods, which is the underlying concept
for the scheme which we are using, the KT (Kurganov-
Tadmor) central scheme, which is developed and explic-
itly discussed in Ref. [51].

To summarize the most important characteristics of
this method, and the way it is implemented to solve the
Lindblad equation, is the reformulation of Eq. (10) into
the one given by Eq. (14) as a conservative equation.

Since we are interested in the temporal evolution of
u⃗(t, x⃗), from some initial time t0 to tN > t0, we define
the finite computational domain Ω = V × [t0, tN ], where
V ⊂ R2 is the discretized spatial volume and t0,N the
initial/final time. The initial condition is therefore given
by u⃗(t0, x⃗), with Dirichlet (Neumann) boundary condi-
tion specifying (∂x,y)u⃗(t, x⃗)|x,y∈∂V .

Finite-volume methods discretize the computational
domain into spatial control volumes Vi, covering the spa-

tial computational domain V. Therefore, let

¯⃗ui(t) ≡
1

Vi

∫
Vi

dξxdξyu⃗(t, ξ⃗) (23)

be the sliding cell average, where Vi ={
ξ⃗ : |ξx − xi| ≤ ∆x

2 , |ξy − yi| ≤ ∆y
2

}
. Then Eq. (14)

can be integrated over the control volumes centred at
x⃗i, using the divergence theorem on the fluxes to obtain
an “integral form”.
To evaluate these integrals to evolve the cell aver-

ages ⃗̄uj in the time from tn to tn+1, one has to cal-

culate the fluxes f⃗x/y and Q⃗x/y at the cell boundaries
xj± 1

2
= xj ± ∆x

2 and xk± 1
2
= xk ± ∆x

2 . This requires

some kind of reconstruction of u⃗ on the cell surfaces. In
general, the time step can be done in various ways, based
on Riemann solvers (e.g. the Roe [52] or the HLLE solver
[53, 54]) or the one we are using from A. Kurganov and
E. Tadmor [51]. This method is using a piecewise lin-
ear reconstruction of the cell averages and a slope limiter
to avoid oscillations. Furthermore, it has the advantage,
that it has a well defined ∆t→ 0 limit, while keeping the
spatial directions discrete. This allows to use standard
time integrators, which can be arbitrary and therefore do
not require to fulfill the CFL condition by hand [55], as
it is the case in other solving methods, such as the widely
used Crank-Nicholson method [56–59].
For details of the implementation and the recombina-

tion method, which is a type of a Monotoc Upstream-
centered Scheme for Conservation Laws (MUSCL) [53],
we refer to the original work [51] and our implementation
and adoptions, cf. Refs. [29, 42, 60], where the details of
the implementation are presented. In Ref. [29] there is
also a comment on the boundary conditions and their im-
plementation, which are chosen to be reflective for finite
sized spatial domains, in order to avoid dissipation out
of the computational domain. Let us explicitly mention,
that the implementation, which we use in this work and
in Ref. [29] was originally produced for Ref. [42].

IV. BOUND-STATES IN LINDBLAD
APPROACH

In this chapter, we discuss a physically motivated ap-
plication, namely the Pöschl-Teller potential, to mimic
bound states and to treat the question of thermalization.
We discuss the Lindblad dynamics of this bound state
problem for various initial conditions, different parame-
ters used in the Lindblad equation and also the depen-
dence on the number of bound states, regarding the pu-
rity, entropy, decoherence, and population of the various
states of the system.
Furthermore, we construct an effective Hamiltonian,

which describes the system-plus-bath interaction to in-
vestigate its eigenfunctions and answer the question, if a
previously bound state can be shifted in its energy such,
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FIG. 3. The temporal evolution of the initially populated bound state towards thermal equilibrium at times t = 0 fm/c, t = 25
fm/c and t = 75 fm/c for the real part (upper panel) and at times t = 1 fm/c, 5 fm/c and 15 fm/c for the imaginary part
(lower panel). The parameters are T = 250 MeV, Ω = 4T , γ = 0.1 c/fm, and Dpx = −γT/Ω, with V (x), given by Eq. (24) and
parameters from Fig. 1.

FIG. 4. The temporal evolution of the initially populated 16th state towards thermal equilibrium at times t = 0 fm/c, t = 0.25
fm/c, t = 1 fm/c, t = 2 fm/c, t = 4 fm/c, and t = 8 fm/c for the real part (upper two panels) and at times t = 0.25 fm/c,
1.5 fm/c and 3 fm/c for the imaginary part (lower panel). The parameters are T = 250 MeV, Ω = 4T , γ = 0.1 c/fm and
Dpx = −γT/Ω, with V (x), given by Eq. (24) with parameters from Fig. 1.



8

FIG. 5. The initial condition, ρ(x, y, 0) for a initially pop-
ulated mixed state, Eq. (27). The parameters are T = 200
MeV, Ω = 4T , γ = 0.1 c/fm, and Dpx = −γT/Ω, with V (x),
given by Eq. (24) and parameters from Fig. 1.

that it is no longer bound when being correlated with the
thermal bath in equilibrium.

We discuss the themalization time scales of the full
system and the bound state and close with a discussion,
where we show the Lindblad dynamics of a system with
three bound states. This will point to the direction of de-
scribing more strongly bound particles (inspired by char-
monia).

A. Framework and general discussion

In order to understand the formation of non-relativistic
particles in heavy-ion collisions as it is motivated in Sec-
tion IA, we consider the following bound-state problem:
we use a one-dimensional Pöschl-Teller potential, which
is embedded into a square-well potential. The reason,
why we have embedded the Pöschl-Teller potential into
a square well potential is to allow us full decomposabil-
ity of the wave functions via ψ(x) =

∑
n cnψn. This

leads to normalizable states and allows the formulation
in terms of matrix elements ρnm(t), which are the coeffi-
cients of the projection of the spatial density matrix onto
the energy eigenfunctions of this very system. The only
constraint, this approach has to obey is, that the outer
“box” has to be large enough, such that the correlation
length of the considered particle is smaller than the size
of the outer walls of the potential. The potential is given
by

V (x) =

{
−V0 1

cosh2(αx)
, for |x| ≤ 20fm

∞ , for |x| > 20fm,
(24)

for α > 0. We follow the idea, introduced in Ref. [25],
but with a smoothened potential, which was already dis-
cussed in Ref. [61] from a different perspective. The
Pöschl-Teller-like part of the potential is indicated in

Fig. 1 as a black dashed line.. The parameter α is chosen
such that the variance corresponds to the deuteron ra-
dius. The outer square-well potential is located at a dis-
tance, which is much larger than the correlation length of
a particle of the size of a deuteron and satisfies normal-
izable, discrete eigenstates, to allow an evaluation of the
system in terms of decomposing the final density matrix.
However, the square-well potential forces us to compute
the wave functions numerically, where we use a standard
shooting method. In our calculation, we include N = 50
states until we truncate the Hilbert space, such that the
energy space is given by E ∈ [−2.3 MeV, 640 MeV]. V0
is the depth of the potential and allows us to control the
number of bound states and also their binding energy. In
our case, V0 = 16.5 MeV leads to the binding energy of
the deuteron, namely,

Ebind ≡ E0 = −2.3 MeV . (25)

In Figs. 1 and 2 we plot the energy eigenfunctions of the
potential Eq. (24) and the corresponding energy eigenval-
ues, Fig. 2. Notice the bound state in Fig. 2, which we
label with n = 0.
For the initial conditions, which we use to solve the

Lindblad dynamical time evolution, given by Eq. (10),
we use

ρ(x, y, 0) =

N∑
m,n=0

cmn ⟨x|ψm⟩ ⟨ψn|y⟩ , (26)

where N is the highest considered state, in our case
N = 50 (E50 ≈ 640 MeV), and therefore the state,
where the Hilbert space of the system particle is trun-
cated. Generally, three different types of initial condi-
tions are interesting for us: (1.) the case where the
bound state is fully populated, cmn = δmnδn0, (2.) a
higher state is initially populated (we will consider the
cases cmn = δmnδnj , j ∈ {8, 16}) and (3.) a mixture of
states, for example cmn = 1

N δmn.

B. Qualitative discussion – time evolution

In Figs. 3 and 4 we show the temporal evolution of the
real and imaginary parts of the density matrix within
the Lindblad framework for the initial conditions cmn =
δmnδn 0 and cmn = δmnδn 16. In Fig. 5 we show the initial
condition

cmn =
∑
k∈K

1

5
δmnδnk , (27)

where K = {0, 9, 19, 29, 39}.
The imaginary part of the density matrices are initially

zero, which is the reason, why we show only plots for
times t > 0, cf. Figs. 3 and 4. As expected, related to
decoherence, one can see, that the imaginary parts build
up to a certain, maximal value and thereafter decrease



9

 0

 0.005

 0.01

 0.015

 0.02

 0  5  10  15  20  25

m=8
m=10
m=12
m=18
m=20ρ

0
m

(t
)

t [fm/c]

ρnn(t=0) = 1, n = 0

 0

 0.0004

 0.0008

 0.0012 m=8
m=10
m=12
m=18
m=20ρ

0
m

(t
)

ρnn(t=0) = 1, n = 8

 0

 0.0002

 0.0004

 0.0006

 0.0008
m=8

m=10
m=12
m=18
m=20ρ

0
m

(t
)

ρnn(t=0) = 1, n = 16

FIG. 6. First row of the off-diagonal matrix coefficients calculated with Eq. (1) for different initial conditions n = 0, 8, 16 for
the density matrix ρ(x, y, t). Here we show ρ0,m, where m = {8, 10, 12, 18, 20}, and the parameters are T = 200 MeV, Ω = 4T ,
γ = 0.1 c/fm and Dpx = −γT/Ω.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-20 -15 -10 -5  0  5  10  15  20

t=0
t=5 fm/c

t=15 fm/c
t=25 fm/c
t=50 fm/c
t=75 fm/c

t=100 fm/c

ρ
(x

,x
,t
)

x [fm]

FIG. 7. ρ(x, x, t) for different times t for the parameters and
setup illustrated in Fig. 3.

until they approximately vanish up to some numerical
uncertainties (note the scales on the respective plot axes).

However, decoherence can also be studied by inspect-
ing

√
ρR(x, y, t)2 + ρI(x, y, t)2, which is illustrated in

Fig. 6. Here we show ρmn(t), which can be calculated
with Eq. (1), where L = 20 fm and for the case, where
m = 0, so that we are regarding only correlations to the
bound states. At this point, this choice of the off-diagonal
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FIG. 8. ρ(x, x, t) for different times t for the parameters and
setup illustrated in Fig. 4.

entries is completely arbitrary and is only done to provide
an insight to the behaviour of the off-diagonal elements.
Since the main feature of decoherence is that a many
body system shows classical behaviour while thermaliz-
ing, we expect, that the off-diagonal elements vanish for
some finite times. In Fig. 6 this can be seen for the given
initial conditions n = 0, 8,´ and 16. Also for all initial
conditions, the decoherence time, the time until the off-
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FIG. 10. ρ(x,−x, t) for different times t for the parameters
and setup illustrated in Figs. 3 and 4. The dashed lines cor-
respond to the initial condition, where n = 16 and the solid
lines correspond to the initial condition, where n = 0. The
dashed-dotted line corresponds to the approximated thermal-
ized result for ρ(x,−x, t), Eq. (29). The non-smooth shape of
the curves for higher time come from the smaller resolution,
which we have generally used. For the initial condition where
n = 16 it was necessary to use a resolution of 1000x1000 grid-
points.

diagonal entries vanish or at least are constant (which is
the case close to the diagonal) is similar for all cases. In
the case, where m = 0 this is approximately 20 fm/c and
for an initial condition, where n = 0 is lowest, but does
not diverge notably also for n = 8, 16. This shows, that
decoherence length is not directly related to thermaliza-
tion, because, as can be seen in Fig. 7, at t = 15 fm/c
the system is far from equilibrium, and also the ther-
malization times decrease significantly for cases, where
the initial condition is composed of a higher occupied
state. One can see, that the off-diagonal parts are pop-
ulated immediately, and thereafter decrease. However,
for the cases, where n = 8, 16 initially, there is a second
peak in Fig. 6 at some later time t ≈ 10 fm/c. This
can be interpreted as an additional correlation between
the states, because at this time, the imaginary part is
already very small. However, transitions take place at
larger time scales and apparently the second peak cor-
responds to the process, where correlations between the
m-th state to the bound state are more probable. Also
boundary effects, such as the reflection at the boarders
of the square well in the coordinate space have to be
taken into account and may cause this second peak. In
Ref. [29], we have shown, that in the case, where a sys-
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tem without dissipation is considered, the density matrix
indeed shows interference patterns, which are caused by
the boarders of the system. Also in the case, where dis-
sipation is included, for initial conditions, which cause
a notable population of the density matrix close to the
boarders of the system, these boundary effects affect the
system. At this point, and due to the fact, that this
dynamics are highly non-trivial, we can only speculate
about a reasonable description of the decoherence dy-
namics in Fig. 6. A deeper understanding of this might
be obtained by discussing the decoherence of this process
separately in phase space, regarding the Wigner transfor-
mation. This is however beyond the scope of the present
work and discussed elsewhere [41].

Figs. 7 and 8 also demonstrate, that although the ini-
tial condition is completely different for both cases, the
same stationary (and potentially thermal) equilibrium is
reached. The same is found in Fig. 9 for the initial condi-
tion, where five states are initially populated. In this fig-
ure, we also show the purity and entropy of this system,
which is discussed in detail in Sections IVE and IVG.
Let us mention here, that for most of the time evolutions
shown in Fig. 9 the pattern is not symmetric. The reason
is that the initial condition, Eq. (27) is a superposition of
symmetric and antisymmetric wave functions. Remark-
ably, this does not influence the final result, which is
almost perfectly symmetric, and the norm of the density
matrix,

∫
dxρ(x, x, t) = 1, which is, during the calcula-

tion violated only up to 2% after 100 fm/c, even for this
highly oscillation setting.

C. Thermalization of the bound state problem

Before we start discussing thermalization, let us men-
tion, that we have several parameters, the diffusion con-
stant Dpx and γ at a given temperature T , which we are
allowed to choose in order to solve the Lindblad equa-
tion properly. In Ref. [39] and [62] it is derived that Dpx

can either be Dpx = −γT
Ω , high temperature limit, and

Dpx = Ωγ/6πT in the medium temperature limit. In the
pure Caldeira-Leggett master equation Dpx = 0 which
brings up the question, if solving the pure Caldeira-
Leggett master equation (which is not in Lindblad form)
leads to thermalization, too.

Another important aspect is given by the “right”
choice of the cutoff-frequency Ω, and its impact on the
final thermalization. This is justified, because we have
seen in Ref. [29], that for the case, where V (x) is the
harmonic potential, the deviation of the analytical re-
sult of the CLME from the barometric formula in the
thermal distribution is a cutoff-effect, which is smaller,
if the temperature is higher, or if the cutoff-frequency is
lower. Therefore, we additionally discuss the cases, where
Ω = T and Ω = 4T . Exemplary, we show the evolution
of ρ(x,−x, t) for different times, and Fig. 10, and the fi-
nal distribution of ρ(x,−x, t) for the case, where T = 4Ω
and Dpx = 0, cf. Fig. 11, for different temperatures and

damping. As we can see in Fig. 11, the distribution gets
narrower for higher temperatures. This is expected from
Eq. (29) and also discussed below.
In the cases, where the temperature is lower (100-200

MeV), the case, where the bound state is initially pop-
ulated, is not fully equilibrated, even after 100 fm/c, cf.
Fig. 18 and later discussion. One can see, that especially
in the case, where we expect the fastest equilibration of
the bound state, γ = 0.5 c/fm, it takes the system longer
to equilibrate, than in all the other cases. This seems to
be related to an over-damping of the system and will be
detailed in Section IVF. Also the final distribution is not
dependent on the damping γ.
To answer the question, which choice of Dpx and Ω is

most suitable for our purposes, we have to compare all
possible combinations for different bath temperatures T
and damping coefficients γ.
Let us turn to the question of thermalization. Having

discussed the general behavior of the density matrix of
a particle in a potential Eq. (24), with different initial
conditions, we want to investigate the thermalization of
this particle surrounded by a thermal heat bath. We
know, that the “thermal” state has to be the same for all
initial conditions. Therefore

ρi(x, y, teq)

ρk(x, y, teq)
= 1 , (28)

where i, k indicate initial conditions with i ̸= k. Here,
teq is some large time, where the system is stationary
and therefore ∂tρ(x, y, teq) = 0. Making sure, that this
condition is fulfilled, we can tackle the question if the sta-
tionary system at large times is really following a thermal
statistical distribution, which for high temperatures and
bosons should be the Boltzmann distribution. In general,
we have two possibilities to investigate thermalization. In
Ref. [29] we have shown, that the distribution of the ma-
trix entries which are orthogonal to the diagonal follow

ρ(x,−x, t) ∼ e−2mTx2

, (29)

for a free particle. Here, we argue, that the width of
the potential, as well as its binding strength are small
in comparison to the total size of the computational do-
main, and therefore the final distribution should be ap-
proximately the one of the free particle.
The reason, why we do not comment on the amplitude

of this distribution is, that we can not obtain an analyt-
ical result for the given potential. Fitting Eq. (29) into
the numerical results and considering ρ(x,−x, t) allows
us to extract a temperature for different values of γ and
T in different limits.
Before we inspect the fitted temperatures, which we

obtain, using Eq. (29), let us have another look at Fig. 4,
where we can see, that the off-diagonal parts, which are
populated at this initial condition seem to be depopu-
lated already after the first 0.25 fm/c. To analyze the
behavior of this off-diagonal part at the very beginning
of the simulation, we plot ρ(x,−x, t) also for early times,
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right after the bath and the system are brought into con-
tact with each other, cf. Fig. 12. Due to the special choice
of the initial condition, one can see, that ρ(x,−x, 0) is
purely negative and then starts to develop its final form
very fast.
Turning to thermalization, in Fig. 13 we show the fit

temperatures, using Eq. (29) normalized to the bath tem-
perature for the different choices of Dpx and the compari-
son for larger and smaller cut-off. The reason, why we do
not care about the cut-off frequency in the case, where we
consider the pure Caldeira-Leggett model is, that Ω does
not appear in the Lindblad equation at all, if Dpx = 0.
At this point, the intermediate result of the analysis of

the off-diagonal ρ(x,−x, 0) in terms of thermalization is
that Tfit ≈ T , the bath temperature, with an maximum
deviation of ±1%, even though we are using the solution
of the free particle, Eq. (29).
The second way to analyze, whether the system is ther-

malized in some stationary state at some large time, is to
evaluate the matrix elements ρnn calculated via Eq. (1)
at some large time t = teq, where the system is station-
ary and therefore should possibly follow the Boltzmann
distribution, given by

ρnn = exp

[
− 1

T
(En − µ)

]
. (30)

Then one can use T as a fit parameter, allowing for a
free parameter µ, the chemical potential. The results
for the considered values of γ, T in the high temperature
limit, where Dpx = −γT

Ω and in the medium temperature
limit, where Dpx = Ωγ/6πT are summarized in Table I
and exemplary depicted for one parameter set in Fig. 14.
Comparing Fig. 13 with Table I and its correspond-

ing illustration, Fig. 14, one observes very good agree-
ment between both ways to fit the system temperature
T , which shows, that in the stationary case, the system
(particle in a Pöschl-Teller potential) takes the temper-
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FIG. 16. Effective wave functions (system-plus-interaction) as the eigenvectors of the diagonalized density matrix ρ(x, y, t) at
different times t for an initial condition, where n = 0, the bound state is originally populated. The dashed line illustrates the
rescaled potential, cf. Fig. 1 and Eq. (24). Here, T = 200 MeV, γ = 0.1 c/fm, Ω = T , and Dpx = −γT/Ω.
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FIG. 17. Effective wave functions (system-plus-interaction) as the eigenvectors of the diagonalized density matrix ρ(x, y, t) at
different times t for an initial condition, where n = 16. The black dashed line illustrates the rescaled potential, cf. Fig. 1 and
Eq. (24). The parameters are the same as in Fig. 16.



15

Dpx = 0
T [MeV] γ = 0.01 γ = 0.1 γ = 0.5

100 96.74 98.79 100.51
150 145.88 149.48 152.14
200 194.72 199.85 203.01
250 243.41 250.09 253.66
300 292.03 300.30 304.26

Dpx = − γT
Ω

Ω = 4T
T [MeV]

100 96.74 99.08 102.31
150 145.89 149.71 152.90
200 194.71 199.99 203.35
250 243.363 250.13 253.72
300 297.92 300.23 304.10

Dpx = Ωγ
6πT

Ω = 4T
T [MeV]

100 96.70 98.46 96.12
150 145.85 149.19 150.71
200 194.67 199.56 202.22
250 243.34 249.78 253.13
300 291.91 299.95 303.82

Dpx = − γT
Ω

Ω = T
T [MeV]

100 96.62 99.66
150 145.83 150.00
200 194.45 199.81
250 242.78 249.25
300 290.73 298.55

Dpx = Ωγ
6πT

Ω = T
T [MeV]

100 96.73 98.71 99.82
150 145.88 149.41 151.88
200 194.71 199.79 202.86
250 243.40 250.03 253.57
300 292.02 300.24 304.20

TABLE I. Fit temperatures of the Boltzmann distribution,
Eq. (30), for different heat bath temperatures T and different
diffusion coefficients Dpx and different cutoff-frequencies Ω
and for initial condition n = 8.

ature of its thermal environment up to a violation of
about 1%. The fact that the temperature is not per-
fectly matching the bath temperature, has to the best of
our knowledge mostly three reasons: (1.) In the case,
where we use ρ(x,−x, t) to fit the distribution of a free
particle, Eq. (29) and not the one of the Poeschl-Teller
potential. (2.) As was shown in Refs. [30, 31], during
the time evolution, the modes of the wave functions can
get shifted due to the coupling to the bath, and there-
fore also the energy eigenvalues of the system. Since we
are projecting ρ(x, y, t) on the set of unperturbed energy
eigenfunctions functions, this can lead to a small devia-
tion. And (3.), we want to remind the reader, that we are
using only 300× 300 cells on the computational domain,
which limits the quality of the norm conservation and

was thoroughly discussed in Ref. [29]. However, these
are only suggestions, because perfect thermalization of
the Lindblad equation was, to the best of our knowledge,
never proved mathematically, and small deviations of the
heat bath temperature were also observed in other works,
as for example Ref. [63].
Disregarding the deviations, one can see, that for

the temperature regime, under consideration, we obtain
slightly better results, if the cutoff frequency Ω is chosen
to be large in comparison to the temperature. This cor-
responds to the case Ω = 4T . For setups with Ω = T the
choice of Dpx has seemingly no impact on the final dis-
tribution, but shows the largest deviation. One can see,
that for all computations, where Ω = 4T and a damping
coefficient Dpx = Ωγ/6πT , the coefficient where medium
temperatures are assumed, Ref. [39], the fitted results
for the temperature deviate slightly more from the bath
temperature, than the ones, where Dpx = −γT/Ω (high
temperatures [3]), which is closest to the bath temper-
ature, in the cases, where Dpx ̸= 0, which satisfies a
Lindblad structure. The cases, where we solve the pure
Caldeira-Leggett equation (Dpx = 0) are usually slightly

above the bath temperature. For Dpx = −γT
Ω and Ω = T

with a comparatively high damping coefficient of γ = 0.5
c/fm we do not provide any results in Table I, because the
norm of the density matrix for this parameters is violated
significantly. This is reasonable, because we have already
discussed in Fig. 11, that for γ = 0.5 c/fm the system is
not stationary yet, even though for lower damping coef-
ficients it is. As we argued above, this reminds us the
over-damped case of the harmonic oscillator, and possi-
bly corresponds to a parameter setup, where fundamen-
tal assumptions in the Lindblad equation are violated,
and therefore reliable results of the evolution cannot be
provided any more.

D. Wave function of the effective Hamiltonian

As we have seen in Section IVC, the density matrix in
the stationary case, is distributed along the diagonal and
symmetric to the left and right off the diagonal.
At this point we want to remind the reader, that, what

we call the “density matrix”, actually is the reduced den-
sity matrix of the “system”, i.e. the partial trace of
the density matrix of the full (closed) quantum system
(system-plus-environment). Generally, a density matrix
in equilibrium for a closed quantum system without in-
teractions has only diagonal entries, because it is com-
posed of orthogonal wave functions. Furthermore, the
density matrix is hermitian. Therefore, we can construct
the full quantum system, which may be of interest in or-
der to calculate the entropy but also to study the inter-
actions, by diagonalizing the reduced density matrix in
position space representation. The corresponding eigen-
values λρi describe the system-plus-environment entries
of the full density matrix. If we assume, that the final
state is Boltzmann-distributed, which has to be the case
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FIG. 18. Entropy S(t) for different bath temperatures T with Dpx = 0 and Ω = 4T . The different line colors correspond to
different damping γ, while the different line-styles correspond to different initial conditions n = 0, 8, 16.
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FIG. 19. Entropy S(t) for different bath temperatures T
with Dpx = −γT/Ω and Ω = 4T . The different line colors
correspond to different values of the damping γ, while the
different line-styles correspond to different initial conditions
n = 0, 8, 16.

because we consider a “bosonic” system at high temper-
ature, the logarithm of the eigenvalues λρi has to fulfil

ln (λρi ) = − Ẽi

T
, (31)

where Ẽi are the energy eigenvalues of the “effective”
Hamiltonian of the system, with the additional inter-
action with the bath, Ĥ = ĤS + ĤSB. At this point,
comparing to the eigenvalues of the density matrix of
the system, we cannot distinguish any more, if there is
still a bound state or if the impact of the heat bath has
shifted the wave functions of the system, such, that there
are only unbound states, because Ẽi contains also the
chemical potential, which leads to an overall shift of the
eigenvalues. In the case, where the system is in thermal
equilibrium, the factor T is the temperature of the full
quantum system and the eigenvalues λρi are real valued.
However, we can compare the effective energies of the

Boltzmann distributed equilibrium case, cf. Eq. (30),

ϵi = − 1

T
(Ei + µ) , (32)
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FIG. 20. Entropy S(t) for different bath temperatures T
with Dpx = Ωγ/6πT and Ω = 4T . The different line colors
correspond to different values of the damping γ, while the
different line-styles correspond to different initial conditions
n = 0, 8, 16.

satisfying ρnn = eϵi .

In Fig. 15 we illustrate the eigenvalues λρi for differ-
ent temperatures T and the fitted values from Eq. (32),
from the numerically evaluated values of ρnn, cf. Eq. (1),
computed with the original initial wave functions. Here,
we clearly see, that there is no difference between both
curves for each temperature, and therefore we cautiously
conclude, that the wave functions get only negligibly
shifted during the process. Also for the parameter se-
tups, where Dpx = −γT/Ω and Dpx = γΩ/6πT , we do
not find any difference, even though this might be ex-
pected comparing to what is found in Refs. [30, 31]. Also
compare to Fig. 14, where ρnn(t) is illustrated depending
on the energy eigenvalues of the initial wave functions.

Let us mention here, that we illustrate only the first
50 out of 300 eigenvalues, which is also the number of in-
cluded eigenvalues of the initially prepared system. An-
other reason is as follows: even though we have the same
amount of eigenvalues as discretization points from the
grid, the numerical procedure we are using to extract the
eigenvalues, the armadillo library [64, 65] to diagonal-
ize the matrix, is more accurate for the largest eigenval-
ues and less accurate for the numerically smaller values.
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FIG. 21. Entropy S(t) for different bath temperatures T
with Dpx = −γT/Ω and Ω = T . The different line colors
correspond to different values of the damping γ, while the
different line-styles correspond to different initial conditions
n = 0, 8, 16.

However, for our purposes, it is sufficient to consider only
the first few (≈ 50) eigenvalues: The energy spectrum
of the system rises quadratically due to the square well
potential for sufficiently large i, cf. Fig. 15 and compar-
ing to Fig. 2 shows, that already for twice the amount
of states, that are illustrated we reach energies that are
around the non-relativistic limit. Besides that, we are
comparing the effective energy eigenvalues to the calcu-
lated values ϵi, which are using the energy eigenvalues of
the initial system, and which are 50 in total, too.

Let us again return to Fig. 15. As already mentioned
we illustrate the population of the energy-eigenvalues of
the effective system in thermal equilibrium, which, as is
expected, rises quadratically with respect to i, for large
i.7 This has to be the case, because the system’s en-
ergy spectrum rises approximately quadratically for suf-
ficiently large energies and the contributions of the bath
modify only the prefactor, which might also correspond

7The reason, that the eigenvalues rise quadratically only for
high temperatures is, that for small i the impact of the Pöschl-
Teller potential is still larger.
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FIG. 22. Entropy S(t) for different bath temperatures T
for the pure Caldeira-Leggett master equation, where Dpx =
Ωγ/6πT and Ω = T . The different line colors correspond
to different values of the damping γ, while the different line-
styles correspond to different initial conditions n = 0, 8, 16.

to a potentially modification of the mass.

Another aspect, which can be studied in Fig. 15 is that
for different temperatures one can see a dependency also
proportional to T , cf. Eq. (31). This, however, cannot
be further investigated, because the chemical potential µ
is different for each heat bath temperature.

However, not only the eigenvalues can be used to ob-
tain a better insight into the full quantum system, also
the eigenvectors, which are the corresponding energy
eigenfunctions of the full system. In Fig. 16 we have
illustrated the first eigenfunctions of the effective Hamil-
tonian. In Fig. 16 the bound state is originally populated,
which means, that for t = 0 the system is initialized by
the wave function which corresponds to E = −2.3 MeV.
One can see, that the interaction with the bath leads to
a broadening of the wave functions for the case, where
n = 0 initially. In the end, when thermal equilibrium is
reached, the wave functions of all initial conditions are
expected to be equal, which can be seen in the lower right
illustration of Fig. 16. But it should be pointed out, that
only the eigenfunctions at the end are also eigenfunc-
tions of the “effective” Hamiltonian. For the intermediate
wave functions, which we calculate during the process of
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thermalization, we cannot provide a meaningful physical
interpretation.

To interpret the final state, the eigenvectors of a ther-
mal Gibbs state have to be the same as the eigenvectors
of the initial (non-interacting) system. This is, what we
obtain in Fig. 16, in the lower right figure, exemplarily
depicted for the bound state.

In Fig. 17 we illustrate the effective eigenvectors for
initial conditions, where n = 16. Again, we plot the
intermediate eigenvectors for different times t and the fi-
nal distribution. On the lower right plot one also can
see a comparison between ψ0,eff(x), calculated from the
effective eigenvector and ψ0(x), which we obtain from
the initial wave function. One can see a small deviation
between those functions, which is due to boundary ef-
fects, and can be also seen on the final distributions for
ρ(x, x, t = 100fm/c) in Fig. 8, where the regions close
to the boundaries, before ρ(x, x, t) starts to vanish, are
slightly higher than in the case, where the bound state
is originally populated. This can also be interpreted as a
Gibbs phenomenon and has seemingly a relevant impact
on the numerically computed eigenvectors. Whereas it
is sufficiently good to fit the right temperatures up to a
deviation of around 1%, and to investigate the station-
ary cases independently of the initial condition, the small
boundary effect, which is caused by interferences due to
the reflective boundary conditions, lead to a slightly dif-
ferent shaping of the effective wave functions.

Admittedly, this calls for further investigation. How-
ever, we do not consider this result to be of physical origin
and therefore accept it at this point.

To summarize this section, we can conclude, that di-
agonalizing the reduced density matrix leads to energy
eigenvalues and eigenvectors, which help to analyse the
open quantum system including the bath interaction.
We have seen, that the energy spectrum also satisfies
quadratic behaviour for large energies, and is tempera-
ture dependent but is in general under-determined up to
free parameters, which are the temperature and chemi-
cal potential. Furthermore, the eigenvectors of the sys-
tem can be considered as the wave functions of the
system-plus-interaction Hamiltonian and therefore give
insight into the localization and binding probability of
each quantum state.

E. Entropy and thermalization time

In this section we use the diagonalization of the density
matrix, to calculate and study the von-Neumann entropy,

S(t) = −Tr [ρ(t) ln ρ(t)] . (33)

The diagonalization is performed on the numeric solu-
tion at discrete timesteps from t = 0, where S = 0 to
teq, where ∂tS(teq) = 0. We can use the entropy to
investigate, at which time the system fully thermalizes,
according to the principle of maximum entropy [66, 67].

Furthermore, we analyze how the thermalization time de-
pends on γ and T , the damping, and if there are further
dependencies, for example on the cutoff Ω and whether
we are in high- or medium temperature, which is mainly
described by the parameter Dpx regime.

Let us start the discussion with the pure Caldeira-
Leggett master equation (Dpx = 0), Fig. 18. We can
see, that all cases tend towards the same final entropy
in the equilibrated state, which is expected, for identi-
cal temperatures. The values for S(t) are higher, if the
temperature is higher. We also find, that for a higher oc-
cupied initial state, the equilibration takes place faster.
The same holds true for the damping γ. If the damping is
small, it takes longer to equilibrate the system, than for a
larger damping γ. Let us also mention, that the temper-
ature itself has a negligible impact on the thermalization
time.

Next, we turn to the cases, where Dpx ̸= 0, where
we furthermore compare Ω = T and Ω = 4T . The cor-
responding (numerical) results are depicted in Figs. 19
to 22. One observes from these figures, that the impact
of the choice of Dpx and Ω on the thermalization time
is in fact are very small. However, we should mention,
that we only consider energy and temperature regimes
which are of interest for our purpose, namely to study
the formation of a bound state in a heavy-ion collision.
Also the choice of γ is motivated from this perspective:
if we consider, the typical freeze out time is less then 10
fm, and γ is related to the friction coefficient, this means,
that γ ≈ 1

τR
, the relaxation time, which further implies,

that γ should be of order 0.1 c/fm. As already men-
tioned, and discussed here and in Ref. [29] the coefficients
in combination among each other, have to fulfil certain
conditions, which can be derived, for the case where V (x)
is the harmonic potential, purely analytically. This can
not be done for general potentials. However, regarding
Fig. 21, for late times in contrast to Fig. 18, the entropy
decreases significantly or even shows some strange be-
haviour during the temporal evolution. This is caused by
the choice of Dpx, which in this case is Dpx = −γT/Ω,
the one for high temperatures. This explains, why we
see this behaviour for “lower” temperatures, considering
high damping (0.1 and 0.5 c/fm). We conclude, that
these damping coefficients, for the given choice of Dpx

violate some analytically non-derivable constraints, and
they are not suitable for this type of scenario. This also
becomes visible in the norm of the density matrix, which,
while solving the Lindblad equation get violated signifi-
cantly. Except for this, we cannot state any remarkable
discrepancies concerning the choices of parameters com-
paring the pure Caldeira-Leggett master equation and
the Lindblad form.

From a numerical point of view let us point out, that
considering Fig. 21, for the setups, where γ = 0.1 the en-
tropy shows some spurious behaviour. Not only, that it
increases in one case, to then decrease again, but also that
towards the final distribution, the entropy decreases in all
cases. This corresponds to the norm, which is in the se-
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tups, where we observe this behaviour violated by about
10%. This indicates, that these parameter setups are
incompatible with a proper Lindblad description, which
can be easily understood: the diffusion coefficient Dpx

corresponds to the high temperature limit, while the cut-
off frequency is the same as the heat bath temperature.
This is contradicting the first assumption.

As a final remark we want to mention, that for the ini-
tial condition, where there is a mixture of states initially,
as illustrated in Fig. 9, also the entropy and the purity is
illustrated. The entropy S(t) gets constant after approxi-
mately 16 fm/c, and therefore somewhere in between the
cases, where we have initialized a pure state.

F. Formation time of the bound state

Besides the equilibration time of the system, which we
are determining considering the entropy S(t), another
interesting time scale is the formation and/or destruction
time of a bound state, respectively of an arbitrary other
state of the given system. In the following, we are going
to consider those states, that serve as a setup in terms of
different initial conditions, i.e. the bound state, and the
states where n = 8 and n = 16.

In Fig. 23 we show the probability of the bound state,
i.e. the ρ00 component, cf. Eq. (1), of the density matrix
with the before-mentioned parameter choices for γ and T
and for different initial conditions, where the states n =
0, n = 8 and n = 16 are initially populated. Firstly, we
see, that higher values of n for the initial condition lead to
a faster population of the bound state, than if the bound
state is already populated, and then depopulates again
during the temporal evolution. This appears plausible,
because the binding potential is most attractive as it is
the lowest energy in the system. On the other hand, it
takes the system much longer to depopulate an initially
bound state.

It is not surprising, that the relaxation time of the
bound state depends on the damping γ and shows recip-
rocal behaviour. Rather more exciting it seems to be,
that the shape of the temporal evolution of ρ00 is not
purely exponential. This can be especially seen in the
cases, where γ = 0.5 c/fm, which shows, that during the
temporal evolution various time scales have to be incor-
porated. In the case, where γ = 0.5 c/fm, regarding
ρ00(t) one can see, that the main dynamics, that leads
to thermalization happens very fast and follows the ex-
pectation, that the system should thermalize faster for
larger values of the damping coefficient. However, an-
other timescale, t ≥ 6 fm/c shows, that for originally
fully populated bound state, the bound state decreases
asymptotically but very slowly towards its final distribu-
tion. This also explains, why in Fig. 11, the cases, where
γ = 0.5 c/fm do also not yet show the final distribution.
This is a case, where final thermalization takes longer,
even though the damping is higher, and seem to mark a
limit of a satisfactory applicability of Lindblad dynamics.

This high value for γ and the fact, that for some choices
of Dpx it was not possible to calculate S(t) properly, cf.
Section IVE, indicates, that a certain choice of γ can
lead to a potential behaviour of a (over-)damped sys-
tem, which can also be seen in Table I, where for one
parameter setup, it was not possible to calculate ρnn(t)
properly. This however is only a hand-wavy interpreta-
tion, since we cannot derive the over-damped solution for
a potential given by Eq. (24) exactly, which is why we use
the numeric approach in the first place.
Furthermore, we want to mention the impact of the

temperature on the (de-)population time of the bound
state is rather weak. However one can see a faster (de-
)population towards full thermal equilibrium for higher
temperatures.
In the following, we discuss Fig. 24, where we have

illustrated the states ρ1 1, ρ8 8 and ρ16 16 in the differ-
ent panels, depending on the different initial conditions
ρnn(t = 0) = 1 for n = 0, 8, and 16. In the stationary
case, all identical states reach the same value, indepen-
dent of the initial condition. As already seen, only for
the case, where the bound state is originally populated,
the full thermalization time for ρ00(t) is recognizably
larger than for all other cases. This is reasonable, be-
cause for an already fully populated bound state it is less
attractive to depopulate, since it is confined in the po-
tential. The thermalization time τR is smaller for higher
states: Despite having used the same damping coefficient
γ = 0.1 c/fm, the individual state-dependent relaxation
time τR = τR(n) is different for each state.
As a final remark, we want to emphasize, that the

(de-)population time of the bound state obeys a differ-
ent timescale than the thermalization timescale of the
full system and therefore the time at which the entropy
gets constant (“pre-thermalization”). Especially towards
higher initialized states and higher values of the damp-
ing coefficient one can see, comparing for example Fig. 18
with Fig. 23, that the bound-state formation takes place
much earlier than the full equilibration of the system.

G. Purity of the density matrix

Investigating the purity,

P (t) = Tr(ρ2) , (34)

helps us to measure the “pureness” of the considered sys-
tem. Therefore, if P = 1, the system is called pure,
i.e. for P = 1, ρ̂ = |ψ⟩ ⟨ψ| is representing a pure state.
Except for the setup presented in Fig. 9, we initialize
our calculation as a pure state. We are always expect-
ing a Boltzmann distribution as the final thermal state,
whose density matrix has a low purity, since each state
is populated. However, the purity should be constant
in the end, which also can be taken as a measure for
thermalization. In order to calculate the purity, apply-
ing Eq. (34), we again diagonalize the density matrix for
different times. We again discuss the purity of different
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parameters, initial conditions, bath temperatures, and
damping γ. In Fig. 25 we illustrate this comparison for
the pure Caldeira-Leggett master equation. We do not
show other choices of parameters, because here again, we
do not find any remarkable differences. To discuss the
result we again find, that the impact of the temperature
on the purity P (t) is not dominant. However, for lower
temperatures, the time when ∂tP (t) ≈ 0 is slightly larger.
As we have already seen in Fig. 18, the purity gets con-
stant fastest for initial conditions, where n is large and
for larger damping, which is not surprising in the context
of the previous discussions.

H. Increasing the number of bound states

In this section we want to modify the system we have
considered until now such, that we strongly increase the
value for V0 of Eq. (24). Here, V0 = 565 MeV. This
allows us to bind more states, which in our case leads to
three bound states. In Fig. 26 we illustrate the energy
eigenfunctions of these states and the first few states for

E > 0 as well as the corresponding energy eigenvalues.
Let us prepare the following three initial conditions:

(1.) only the lowest bound state, with eigenvalue

E−2 = −382 MeV , (35)

(2.) only the highest bound state, which is quite on the
border to be unbound,

E0 = −0.74 MeV , (36)

and (3.) mixed state, where all three bound states are
populated equally at t = 0. The second bound state has
an eigenvalue

E−1 = −104.3 MeV . (37)

The density matrices for these initial conditions are il-
lustrated in Fig. 27. After evolving the system until
it reaches its “final” distribution, which we illustrate in
Fig. 28, we can tackle the same questions as already done
in the case, where we have considered only one (loosely)
bound state: Does the system thermalize? What time
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with positive energy eigenvalues and the rescaled potential
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see the first 8 energy eigenvalues of the given potential.

does it need to thermalize? How do the entropy and pu-
rity behave? We compute the Lindblad dynamical evolu-
tion of this setup for a parameter set, which appears most
suitable in terms of time scales and energy regimes from
our above discussions, applying the findings of the case
with one bound state. As we can directly see in Fig. 28
the impact of the potential which is located in the centre
of the diagonal is more visible, because it is much more
attractive than in the case with smaller V0 and only one
bound state. As a following step, we compute the coef-
ficients ρnn(t) using Eq. (1) to project on the very state
of interest, and illustrate the bound states for the above
mentioned initial conditions, cf. Fig. 29. Here we can
see, that independent of the initial condition, all three
cases reach the same final distribution, which does not
mean, that they follow a monotonic behaviour towards
this distribution. This was already found in Ref. [25],
where each state adjusted to the thermal distribution
during the temporal evolution as well. In Fig. 29 one can
also see the final distribution of the bound states, fol-
lowing the procedure of fitting a Boltzmann distribution
to obtain the fit parameters µfit and Tfit. One can see,
that the lowest bound state does not reach its final value
for ρnn(t), which is predicted analytically by Eqs. (1)
and (30) after 2000 fm/c! However, the system is sta-
tionary after approximately 1500 fm/c, which seems to
correspond to a strengthening of the effective potential,
and allows the speculation, if for strongly bound states
the binding energy gets enforced due to bath interactions.
To investigate this further, we apply the procedure of cal-
culating the eigenvectors (effective wave functions of the

FIG. 27. ρ(x, y, 0) for three different initial conditions of
the setup given in Fig. 26. The upper plot shows the initial
condition, where the n = −2 state, the state with the largest
negative energy is originally populated, the middle plot shows
the case, where the n = 0 state, the state with the highest
negative energy is originally populated and the lower plot
shows the case, where all three bound states are populated
equally, with purity 1/3.
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FIG. 28. ρ(x, y, t) at t = 2000 fm/c, as the final distribution
of the setup given in Fig. 26 of one of the initial conditions
introduced in Fig. 27 following Lindblad dynamics. Here the
bath temperature is given by T = 200 MeV, the cut-off fre-
quency Ω = 4T , γ = 0.1 c/fm and Dpx = −γT/Ω.

stationary system) to compare the initial wave functions
to the effective ones.

Furthermore, recapitulating what was shown in
Refs. [30, 31], the wave functions and therefore the en-
ergy eigenvalues of the system can get shifted during the
temporal evolution. In consequence, it is theoretically
possible to make a bound state unbound by bringing it
into contact with a thermal heat bath. This is the rea-
son, why we tuned the potential such, that the bound
state with the highest energy is bound only very weakly.
To discuss these questions, we illustrate the three bound
states, cf. Fig. 30 and the initial wave function. Having
in mind, that the lowest bound state is above its analyt-
ically predicted value, we would expect, that the wave
functions of this state appear different for the effective
Hamiltonian. Surprisingly, the two lowest bound states
are exactly the same as initially and only the most weakly
bound state differs slightly from the initial value. Also
comparing the eigenvalues λρi , Eq. (31) with Eq. (32), cf.
Fig. 31 shows, that all values are the same, except that
the lowest bound state analytically, following Eq. (30), is
expected to be slightly above the numerical result, which
was already mentioned, cf. Fig. 29. One possible ex-
planation for this is, that due to the interaction with
the heat bath, the effective potential is stronger than the
background potential Eq. (24).

Diagonalizing the density matrix allows us to calcu-
late the entropy and purity of the system. This we have
illustrated in Fig. 32, where we also show the final dis-
tribution of ρnn at time t = 2000 fm/c. Fitting a Boltz-
mann distribution, to the distribution given by ρnn we
can extract a temperature Tfit = 196.42 MeV, which is
slightly lower than the bath temperature of 200 MeV.

Let us point out here, that the system achieves equilib-
rium after ≈ 1200 fm/c, which can be seen considering
the entropy in Fig. 32. For times t > 1200 fm/c, the
entropy seems to decrease, which has a purely numerical
reason: the norm in all three setups decreases linearly
and is violated at t = 2000 fm/c by up to 10%. This of
course affects also the entropy but can be controlled eas-
ily by increasing the number of cells in the computational
domain. For our phenomenological interests, we schedule
this problem for an upcoming work about strongly bound
particles [41]. One other interesting remark is deduced
from the case where ρ0,0 is originally populated. This
corresponds to an energy, which is ≈ 0, in comparison
to the heat bath temperature of 200 MeV and the lowest
energy in the system, which is −382 MeV.
The total entropy decreases for the initial condition,

where ρ0,0(t = 0) = 1 after rapidly increasing for early
times, cf. Fig. 32. One can also observe, considering
the purity in Fig. 33, that at the same time, where the
entropy reaches its maximum value, the purity is mini-
mal, and decreases afterwards. This should be the case,
because purity and entropy are related to each other.8

In the Lindblad approach the heat bath is assumed to
be a thermostat, and therefore is constant in tempera-
ture. Since the Lindblad approach do not provide any
information about the back reaction of the heat bath to
the system, but energy is exchanged between the bath
and the system, it is generally not impossible to observe
a decreasing entropy. However, to get full information
about work and heat, one should introduce a more so-
phisticated definition of an entropy, which takes also the
heat bath into account [68].
The thermalization time of 1200 fm/c is of course way

over the thermalization times, we found in the cases,
where only one state was (slightly) bound, and corre-
sponds to the large energies which are needed to bind
three states (the lowest energy is close to -400 MeV and
the bath temperature is 200 MeV). However, this can
be easily understood. Phenomenologically, the system is
perturbed by environmental particles during the process
and therefore with energy. Due to the large energy gaps
among the bound states, it takes the system much longer
to absorb enough energy to transition between different
states. Interestingly, for the case, where the highest of
the three states is populated initially, which has an en-
ergy of only E0 = −0.72 MeV, the entropy decreases after
increasing rapidly.
Next, let us discuss the purity, Fig. 33. We initialize

two cases as pure states and one as a mixed state, where
the purity is 1/3 at t = 0. Similarly to the entropy, also
the purity decreases slightly for larger times, which we
neglect here in order to visualize and focus on the be-

8In general, it would be also possible to construct a mixed state
as an initial condition, where the purity is lower than the purity
of the equilibrated thermal state. For this condition, the purity
should increase, while the entropy should decrease.
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haviour for times t < 1000 fm/c. For all three conditions
we can see, that the purity reaches the same value at a
time t ≈ 1000 fm/c which is slightly earlier than S(t).

V. SUMMARY AND OUTLOOK

A. Summary

In the last decades open quantum system turned out to
be a major topic in physics. Despite providing a deeper
fundamental understanding of the quantum nature of a
physical system and its connection to the classical world,
they are practically applied also to physical systems in a
broader sense, such as biological systems or quantum-
information devices. In particular, understanding the
non-linearity and interactions/impacts of thermal envi-
ronments on a system of interest is a necessity when it

comes to highly sensitive measurements.

A special physical system, which itself is part of a
many-body system is a deuteron in nuclear matter with
a binding energy much lower than the energy of the sur-
rounding system. Therefore, the question of how the
deuteron is formed in such a many-body system, and
what its formation time is, is an interesting case for
studying the properties of open quantum systems within
the context of heavy-ion collisions.

To turn to a physically motivated model, which was
constructed to mimic bound states and therefore investi-
gate the formation or destruction time of such a bound
state and to treat thermalization, we found, that for var-
ious regimes and various parameters thermalization is
reached up to some (small) numerical discrepancy, and
the equilibration time is usually dependent on the tem-
perature of the heat bath and the damping coefficient,
as well as the cut-off frequency of the Ohmic heat bath
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spectrum. We found, that the solution of the pure CLME
leads to a thermal state as well as the various modifica-
tions, which are incorporated in order to obtain Lindblad
form.

We have used different measures to approach the ques-
tions of thermalization and the thermalization time.
Therefore, we calculated the reduced density matrix
ρ(x, y, t) at arbitrary times towards equilibration. We
used ρ(x,−x, t = teq) and the coefficients ρnn(t = teq) to
clarify the question of thermalization and calculated the
entropy and purity of the system to extract the thermal-
ization time. This we have done for various heat bath
temperatures T , damping coefficients γ, and initial con-
ditions, as well as for different types and formulations of
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the Lindblad equation.
Generally, the damping parameter γ seems not to

satisfy the simple relation γ = 1
τR

in a rigorous way.
Moreover, the thermalization time depends on the ini-
tial condition, such, that for higher populated states,
the thermalization time is much smaller. Furthermore,
we found strong dependencies on the damping, which
is phenomenologically understandable, and the binding
energies set by the system potential. The heat bath tem-
perature and the choice of the diffusion coefficients Dpx

seems to be of subleading relevance for the above ques-
tions.
Therefore, we cautiously claim, to have shown, that

the considered system thermalizes. The weak-coupling
limit and the Markovianity lead to thermalization times
of the typical order of the formation times, which are
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observed in heavy-ion collisions and which are typically
< 10 fm/c, if states with higher energies are originally
populated.

We have shown, that a bound state can be stably
bound due to environmental effects.

All numerical computations were done with a finite
volume method, which is successfully used in hydrody-
namics and is applicable for systems, which preserve con-
served quantities, such as in our case the norm of the
density matrix. Therefore, we have recapitulated the
conservative form of the Lindblad equation in terms of
a diffusion-advection equation, which was derived in a
previous work [29]. This additionally opened up a new
viewpoint of dissipative quantum systems from a fluid
dynamical perspective.

B. Outlook

Lindblad master equations are demanding in two ways:
firstly, they are numerically demanding, and even if we
hope to have convinced the reader to have a numerically
powerful tool, there is still room for improvements. One
aspect, that has been already discussed in [29] is norm
conservation on the numerical level. Especially, when we
want to implement spatial diffusion on a finite spatial
grid, which is necessary to reproduce the full Lindblad
equation, small violations of the norm conservation turns
out to be a mathematical fact [29] and is not totally under
control yet.

On the numerical side, it would be desirable to ex-
tend the model to two or three dimensions and to imple-
ment the diffusion coefficient Dxx. Therefore, it would
be necessary to increase the computational domain such,
that the boundary effect, which is caused by the spatial
diffusion turn to be negligible. This of course leads to
numerically more expensive calculations.

Furthermore, it is desirable to understand more of the
general structure of the Lindblad approach framework.
Therefore, as a “work in progress” we perform a com-
parison between a non-Markovian approach from a fully

solvable path integral to the Lindblad master equation,
and a comparison to another popular approach for open
quantum systems, the Kadanoff-Baym approach, apply-
ing Keldysh-Schwinger methods [41, 69].

In future works, we also want to implement time-
dependent damping coefficients, which makes it neces-
sary to calculate the momentum and coordinate space
expectation values, which can be obtained by a Wigner
transformation. Additionally, this allows us to study de-
coherence and gain a deeper understanding of the phys-
ical interpretation of the real and imaginary part of the
density matrix in the hydrodynamical picture, which au-
tomatically brings us to the fundamentals of quantum na-
ture. We also plan to investigate other systems, described
by different potentials to mimic for example charmonia-
like potentials.
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