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Physics 208 Quiz 6

March 26, 2008; due April 4, 2008

Problem 1 (50 points)

In the lecture (on March 24) we have seen that a magnetic dipole field can be described by

~B(~r) =
µ0

4π

[

3(~r~pm)~r

r5
−

~pm

r3

]

.

Here, µ0 = const is a constant, we will learn about in detail in the next chapter; ~pm is a constant
vector called the magnetic dipole moment, and ~r is the position vector of an arbitrary point.

Let S be a sphere with radius R around the origin. Show that there is indeed no “magnetic charge”
present as it should be, i.e.,

∫

S

d~S ~B = 0.

Hint: Is is helpful to choose appropriate coordinates, namely spherical coordinates with the polar
axis (in our standard notation that is the z axis) in the same direction as ~pm.

Solution

As indicated in the question we choose the z axis of our Cartesian coordinate system along the
magnetic dipole moment:

~pm = pm
~iz (1)

and introduce usual spherical coordinates

~r = r cos ϕ sinϑ~ix + r sinϕ sinϑ~iy + r cos ϑ~iz. (2)

The sphere around the origin with radius R has the surface-element vector (see the math sheet
about coordinates on the course webpage!)

d~S = R2 sinϑ dϑ dϕ~ir. (3)

Further, from (1-2) we find along the sphere (r = R):

~pm~r = pmR cos ϑ, ~pm
~ir = pm cosϑ. (4)

Using the diplole field given in the question we find

ΦB =

∫

S

d~S ~B =
µ0

4π

∫ π

0

dϑ

∫ 2π

0

dϕR2 sinϑ

[

3R2pm cos ϑ

R5
−

pm cos ϑ

R3

]

=
µ0pm

2πR

∫ π

0

dϑ

∫ 2π

0

dϕ sinϑ cos ϑ.

(5)



Since the integrand does not depend on ϕ, the integral over ϕ gives just a factor 2π, and we are left
with the integral

I =

∫ π

0

dϑ sinϑ cos ϑ. (6)

To find the integral we substitute u = cos ϑ, leading to dϑ sinϑ = −du and thus

I = +

∫ 1

−1

duu = 0. (7)

So we find that indeed ΦB = 0 as it should be. There are no magnetic charges (“monopoles”)
present. Up to now all searches for magnetic monopoles have failed. Thus we assume that there
are none, i.e., for each closed surface S

∮

d~S ~B = 0. (8)

This is one of the basic equations of electromagnetism, known as Maxwell’s equations. As we
will learn later, it is generally valid, not only for the static case we have considered so far.

Problem 2 (50 points)

In the early 1930ies, Ernest Lawrence invented a new type of particle accelerator called Cyclotron.
To understand the principle, we show a figure contained in Lawrence’s patent application:

The apparatus consists of two D-shaped electrodes (called simply D’s by accelerator physicists).
They are connected to a radio-frequency (RF) voltage of frequency f . The voltage at the electrodes
is thus changing with time by

V (t) = Vmax cos(ωt), ω = 2πf.

Now by some mechanism, at t = 0 a proton (charge q = 1.6 · 10−19 C, mass m = 1.67 · 10−27 kg)
is produced in the gap between the poles. This is the beginning of the dashed line, denoted “high



speed ions” in the picture. The voltage is such that the lower plate at this moment is the + terminal,
and the upper plate the − terminal (i.e., the upper signs indicated in the figure). Thus the proton
becomes accelerated upwards as shown in the left part of the figure.

The whole apparatus is evacuated (such that the protons suffer no friction with air), and a magnetic
field, ~B, perpendicular to the plane pointing outwards, is applied. As we know from the lecture, this
forces the protons on a circle. After half a cycle, the protons enter again the gap between the poles,
and the magnitude of the B field is chosen such that now the electric field is pointed precisely in
the other direction (indicated by the lower signs in the figure) with a voltage difference Vmax. Thus,
again the protons gain the maximal possible acceleration. This condition is called the “resonance
condition”.

With the knowledge from the lecture, you can easily calculate Lawrence’s original setup (which, in
1939 earned Lawrence the Nobel Prize in physics!).

1. It is given that the magnetic field in Lawrence’s apparatus in one case has been of magnitude
B = 0.693 T = 0.693 Wb/m2 and that Lawrence has chosen the frequency of the voltage such
that the protons cycle around exactly once in one period of the RF voltage. What is this
frequency, f = ω/(2π), of the voltage, Lawrence has used in this case? Explain briefly, why
this is a good choice, meeting the “resonance condition”, explained above.

2. The radius of the apparatus, within which the principle works, has been about rmax = 28 cm.
The maximum voltage of the RF generator used has been Vmax = 4000 V. Calculate the
maximal energy of the protons, that Lawrence could reach with his apparatus. Hint: Note
that the protons are accelerated twice per cycle and, in the ideal case assumed here, in each
acceleration run through the full voltage difference, Vmax.

3. How many cycles have the protons made to full acceleration?

4. (for extra credit): Suppose, you want to build a cyclotron, but you cannot reach as high
magnetic fields as Lawrence could. Which are smaller allowed values for B to meet the
“resonance condition”, i.e., that the protons are always accelerated by the maximum available
voltage, Vmax, when they run through the gap of the poles? What is the disadvantage?

Hint: You find the Lawrence’s original paper in the Physical Review:
E. O. Lawrence, M. S. Livingston, Phys. Rev. 40 (1932) 19.

It is available online (if you use an internet connection within the university) at the following URL:

http://link.aps.org/abstract/PR/v40/p19

If you read the paper, note that Lawrence uses different units, called Gaussian CGS units, than we
do!

http://link.aps.org/abstract/PR/v40/p19


Solution

Ad 1. In the lecture we have solved the equations of motion for a charged particle in a constant
magnetic field, ~B = Bz

~iz. We have found out that it goes in a circle in the plane perpendicular to
the magnetic field, provided vz = 0 which we assume to be true in the following. The solution also
gave this angular velocity to be

ωp =
qB

m
. (9)

Lawrence used the remarkable fact that this is independent of the radius of the particle’s circular
orbit. That means, if the proton becomes faster, the radius must become larger by the same amount
so that it always takes the same time

Tp =
2π

ωp

(10)

to run through the full circle. With the given field strength, mass and charge of the proton we find
for the particular example from Lawrence’s paper

fp =
ωp

2π
= 10.57 · 106 1

s
= 10.57 MHz. (11)

As indicated in the question, Lawrence chose this radio frequency (RF) for the AC voltage, i.e.,
f = ω/(2π) = fp. This is a good choice since in the ideal case then the proton always runs through
the full voltage difference, Vmax = 4 kV.

To understand this, suppose, it starts at t = 0 at the lower terminal in the gap. Then it is accelerated
upwards towards the upper terminal. There it is bent by the magnetic field, and inside the D-shaped
cavity there is no electric field and thus keeps its speed gained before running through the gap. So
it runs half a circle which takes the time Tp/2. But that is also half a cycle of the RF voltage
and thus now the upper terminal is positively charged and the proton is again accelerated running
through the full voltage drop, Vmax, inside the gap.

20 points

Ad 2. The velocity of the proton is related to the angular velocity by

v = rωp =
rqB

m
(12)

where r is the radius. The maximal velocity, you can reach with the cyclotron is thus reached when
r = rmax:

vmax = rmaxωp = 18.6 · 106 m

s
. (13)

The maximal reachable energy is thus

Emax =
m

2
v2
max = 2.89 · 10−13 J = 1.8 MeV. (14)

Here, we introduced a unit for energy which is very useful in particle physics, the electron volt.
One electron volt is the energy an electron (or any particle with 1 elementary unit of charge,
e = 1.6 · 10−19 C) gains when it runs through a voltage difference of 1 V, i.e.,

1 eV = 1.6 · 10−19 J. (15)



The eV is a special unit allowed in the international system of units (for the use in particle physics).
So it is also allowed to use the usual prefixes like “kilo” (k) “mega” (M), etc. Thus 1 MeV = 106 eV.

20 points

ad 3. In each cycle the protons run through the gap twice and thus, in the here assumed ideal case,
gain the energy

∆E = 2qV = 8 keV. (16)

So, the number of cycles to reach the maximal energy is

Ncycles =
Emax

∆E
= 225. (17)

As one can read in the above mentioned paper, Lawrence reached protons with an average energy
of 1.22 MeV. Our estimate is thus in the right order of magnitude, and of course in reality not all
protons are perfectly synchronized as we assumed for our ideal case.

10 points

ad 4. According to (9), with a smaller magnetic field you can only get smaller angular velocities
of the protons, ωp. This gives you of course a longer time, Tp, to run through a full cycle. To meet
the resonance condition, your Tp must be an odd multiple of the RF’s time perios, i.e., you must
have

T ′

p = (2n + 1)T =
2n + 1

f
, n ∈ {0, 1, 2, . . .}. (18)

Lawrence had a magnetic field B to reach the shortest possible time for the given RF, f (corre-
sponding to n = 0). Since you have not as strong a magnet, you have to choose a longer time. The
good values for your B field would thus be

B′ =
B

2n + 1
, n ∈ {1, 2, . . .} (19)

The disadvantage then is that due to your smaller angular velocity,

ω′

p =
ωp

2n + 1
, (20)

with a given radius rmax of your D’s you can reach only smaller velocities

v′max = rmaxω
′

p =
vmax

2n + 1
, (21)

and thus finally smaller energies:

E′

max =
m

2
v′max

2
=

Emax

(2n + 1)2
. (22)

To put it in another way, to reach the same energies as Lawrence you would have to make the
radius by a factor 2n + 1 larger. This would cause another serious trouble: To make the cyclotron
principle work, you need a magnetic field which is constant throughout the whole region to a high
accuracy, and this is not so easily achieved for larger regions (see Lawrence’s paper for details about
this issue).

10 points extra credit


