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Physics 208 Quiz 5

March 03, 2008 (due March 07, 2008)

Problem 1

(a) Three capacitors are hooked to an ideal battery with voltage V as shown in the figure. Cal-
culate the total capacitance of this circuit.

(b) How much charge is stored on the (positively charged) upper plates of each capacitor and how
much in total?

(c) How much energy is stored in each capacitor and how much in total?
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Solutions

(a) First take capacitors C2 and C3 which are obviously connected in series. They can thus be
substituted by a capacitor with capacitance

C23 =
C2C3

C2 + C3

. (1)



Then this capacitor is hooked up to the battery parallel to C1. Thus, the total capacitance of the
three capacitors is

C = C1 + C23 = C1 +
C2C3

C2 + C3

. (2)

(b) On the total capacitor we have a charge

Q = CV. (3)

On C1 and C2 sits the same charge (I always give the charge on the positively charged plates):

Q2 = Q3 = Q23 = C23V =
C2C3

C2 + C3

V. (4)

On C1 we have
Q1 = C1V. (5)

Note that the total charge moved from the plus terminal to the positively charged plates is

Q = Q1 + Q23 = CV (6)

since the (negative) charge on the lower plate of C2, which is −Q23 compensates the (positive)
charge on the upper plate of C3.

(c) The total energy stored in the electric fields between the plates of the capacitors is

W =
1

2
CV 2, (7)

where C is given by Eq. (2).

In C1 we have

W1 =
1

2
C1V

2. (8)

To get the energy stored in C2 and C3 we need the voltages on these capacitors which can be
calculated with help of (4):

V2 =
Q2

C2

=
C3

C2 + C3

V, V3 =
Q3

C3

=
C2

C2 + C3

V. (9)

Of course, we have V2 + V3 = V as it should be.

Now we can calculate the energy contents:
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1

2
C2V

2
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2
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2C2

V 2,

W3 =
1

2
C3V

2
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C3

2
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2

(C2 + C3)2
V 2 =

C2
23

2C3

V 2.

(10)

We have used Eq. (1) for the final expressions, because then we can easily check the consistency of
these calculations. Let’s see, how much energy is stored on capacitors C2 and C3 together:

W2 + W3 =
C2

23

2

(

1

C2

+
1

C3

)

=
1

2
C23V

2, (11)



as it should be. From this it’s also easy to check that the total energy comes out right:

W = W1 + W2 + W3 =
1

2
(C1 + C23)V

2 =
1

2
CV 2. (12)

Of course this total energy came from the battery.

Problem 2

(a) For the network given in the circuit diagram below, calculate the currents through each resistor
and the voltage at the capacitor. [Hint: Express all results in terms of the quantities given in
the circuit diagram!]

(b) Suppose, you only need to know the voltage at the capacitor. How can you simplify the task
to find it, compared to the complete network analysis, you have done in part (a)? Compare
the results!

(c) What is the total power used by this circuit?

(d) How much energy is stored in the capacitor?
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Solutions

(a) We assign currents through the resistors with directions of the surface vectors along the wire and
± assignments at the terminals of the batteries, resistors, and the capacitor. We have also already
used some obvious continuity equations to relate the currents running along the upper horizontal
line of wires and resistors and the lower one. We also have already figured in the fact that (in the
steady state considered here) there is no current through the capacitor:
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Now we use the circuital law (Kirchhoff’s 2nd law) to the three loops shown in the figure:

1 : V − R1i − R3i2 − R2i = 0, (13)

2 : R3i2 − R4i1 = 0, (14)

3 : R4i1 − V1 = 0. (15)

Finally we use the continuity equation (Kirchhoff’s 1st law) at the knot, labeled A, to find a fourth
equation

A : −i + i1 + i2 = 0. (16)

The next step is to sort the unknowns of the system of linear equations on the left-hand side and
the inhomogeneous terms on the right side. To use Gauss’s elimination algorithm efficiently, we
write the linear equations in matrix-vector notation:









R1 + R2 0 R3 0
0 −R4 R3 0
0 R4 0 −1
−1 1 1 0












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

i

i1
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





=
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0
0
0









. (17)

Now one can systematically multiply and add/subtract rows of the matrix, given by the matrix
on the left-hand side of the equation, augmented by the column given on the right-hand side to
bring the matrix in “upper triangle form”. This procedure (Gauss’s elimination algorithm) gives
the equivalent system of linear equations:









R1 + R2 0 R3 0
0 −R4 R3 0
0 0 −R3 1
0 0 0 c








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





=









V

0
0

R3R4V









, (18)

where
c = (R1 + R2 + R3)R4 + R3(R1 + R2) = (R1 + R2)(R3 + R4) + R3R4. (19)



Now one can easily solve for i, i1, i2, and V1 “from the bottom to the top”:

V1 =
R3R4

c
V,

i2 =
V1

R3

=
R4

c
V

i1 =
R3i2

R4

=
R3

c
V

i =
V − R3i2

R1 + R2

=
R3 + R4

c
V,

(20)

where c is given by Eq. (19).

(b) If we do not need to know all the currents through the resistors, but only the voltage at the
capacitor, we can first combine R3 and R4 to an auxiliary resistor, R5. Since R3 and R4 are in
parallel, we have

R5 =
R3R4

R3 + R4

. (21)

Drawing a simplified circuit diagram with R5 substituting R3 and R4 gives a single-loop circuit which
is much easier to analyze than the more complicated detailed network. We have three resistors in
series, and thus the total resistance of the circuit is

R = R1 + R2 + R5 =
c

R3 + R4

, (22)

where c is again given by (19).

The current through R5 is identical with the one labeled i above. In our simplified scheme it’s easily
calculated to be

i =
V

R
=

R3 + R4

c
V, (23)

which of course coincides with our finding in (20).

The voltage on the capacitor, V1, is the one on R5 and thus

V1 = R5i =
R3R4

c
V, (24)

again in agreement with (20).

(c) Here we have two possibilities. The most easy one is to use our simplified circuit, we figured out
in (2): The the power (energy per unit time, converted to heat in the resistors) is

P = Ri2 =
V 2

R
=

R3 + R4

c
V 2. (25)



The more cumbersome method is to add up all the powers of the single resistors,

P1 = R1i
2 =

R1(R3 + R4)
2

c2
V 2,

P2 = R2i
2 =

R2(R3 + R4)
2

c2
V 2,

P3 = R3i
2

2 =
R3R

2
4

c2
V 2,

P4 = R4i
2

1 =
R4R

2
3

c2
V 2,

(26)

and then add them up to the total power

P = P1 + P2 + P3 + P4 =
R3 + R4

c2
[(R1 + R2)(R3 + R4) + R3R4]V

2 =
R3 + R4

c
V 2 (27)

which is, of course the same as (25).

(d) The energy stored in the capacitor is given by

W =
C

2
V 2

1 =
C

2

(

R3R4

c

)2

V 2. (28)

Remark

In our DC context, capacitors are quite “inactive”, because there runs no current through them.
To analyze a DC network, you can thus simply omit the capacitors and calculate all the currents
through the resistors in the network. The voltages on capacitors are then given by the voltages on
the resistors (which can be composed of several resistors in series and parallel) between the points
in the circuit to which each capacitor is attached.

In our case, this would simplify matters slightly, because it reduces the set of linear equations with
four unknowns to one with only three, and then you can use the method detailed in problem (2) to
find the voltage at the capacitor.


