H. van Hees Sommersemester 2022

Mathematische Methoden der Physik für das Lehramt L3 - Blatt 10

Aufgabe 1 [10 Punkte]: Drehungen um eine vorgegebene Achse Zeigen Sie, daß durch

$$\vec{x}' = \hat{D}_{\vec{n}}(\varphi)\vec{x} = \vec{n}(\vec{n} \cdot \vec{x}) + \vec{n} \times (\vec{x} \times \vec{n})\cos\varphi + (\vec{n} \times \vec{x})\sin\varphi \tag{1}$$

eine Drehung des Vektors \vec{x} um die Drehachse in Richtung von \vec{n} , wobei $|\vec{n}| = 1$, um den Winkel $\varphi \in [0, \pi]$ im Sinne der Rechte-Hand-Regel gegeben ist.

Anleitung: Im folgenden sei $\hat{x} = \vec{x}/r$ mit $r = |\vec{x}|$ der Einheitsvektor in Richtung von \vec{x} . Falls $\vec{n} \parallel \hat{x}$ ist die Formel sicher korrekt (warum?). Sei also $\vec{n} \times \hat{x} \neq 0$. Dann beschreiben wir die Drehung am besten in dem folgenden an \vec{x} angepaßten kartesischen rechtshändigen Koordinatensystem $\vec{e}_3 = \vec{n}$, $\vec{e}_2 = \vec{n} \times \hat{x}/|\hat{x} \times \vec{n}|$, $\vec{e}_1 = \vec{e}_2 \times \vec{e}_3$

- (a) [3 Punkte] Drücken Sie \vec{e}_1 und \vec{e}_2 so einfach wie möglich mit Hilfe von \vec{n} und \hat{x} aus.
- (b) [2 Punkte] Bestimmen Sie die Komponenten von \vec{x} bzgl. des kartesischen Koordinatensystems $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.
- (c) [3 Punkte] Bzgl. dieses Koordinatensystems handelt es sich offenbar um eine Drehung um die 3-Achse. Was sind demnach die Komponenten von \vec{x}' bzgl. dieses Koordinatensystems? Hinweis: Zeichen Sie die Projektion \vec{x}_{\perp} von \vec{x} und \vec{x}_{\perp}' von \vec{x}' auf die 12-Ebene in das oben konstruierte kartesische Koordinatensystem ein und lesen Sie die Komponenten x_1' und x_2' des gedrehten Vektors ab. Beachten Sie weiter, daß offenbar $x_3' = x_3$ gilt.
- (d) [2 Punkte] Drücken Sie zum Schluß

$$\vec{x}' = \sum_{j=1}^{3} x_j' \vec{e}_j$$

durch die Vektoren \vec{x} und \vec{n} aus und zeigen Sie, daß das Resultat mit (1) übereinstimmt.