H. van Hees Sommersemester 2019

Mathematische Methoden der Physik für das Lehramt L3 - Blatt 9

Aufgabe 1: Vektoralgebra in der Ebene

Gegeben seien die drei Vektoren \vec{a} , \vec{b} und \vec{c} in der x-y-Ebene bzgl. einer kartesischen Basis: $\vec{a} = (1,2)^t$, $\vec{b} = (3,0)^t$, $\vec{c} = (-1,1)^t$.

- (a) Zeichnen Sie die drei Vektoren in ein Koordinatensystem.
- (b) Bestimmen Sie den Betrag der drei Vektoren.
- (c) Berechnen und zeichnen Sie die Vektoren $(-\vec{a})$, $\vec{a} + \vec{b}$, $\vec{a} \vec{b}$ und $2\vec{a} \vec{b}$.
- (d) Wie lautet der Einheitsvektor \vec{e}_c in Richtung des Vektors \vec{c} ?
- (e) Bestimmen Sie jeweils die Projektion der Vektoren \vec{a} , \vec{b} und $\vec{a} + \vec{b}$ auf den Einheitsvektor \vec{e}_c .
- (f) Bestimmen Sie die reellen Zahlen α und β derart, daß $\alpha \vec{a} + \beta \vec{b} = \vec{c}$.

Aufgabe 2: Winkel im Skalarprodukt

- (a) Was bedeutet $2(\vec{a} \cdot \vec{b}) = |\vec{a}| \cdot |\vec{b}|$ für den Winkel zwischen den beiden Vektoren?
- (b) Beweisen Sie mit Hilfe des Skalarprodukts den Cosinus-Satz der ebenen Geometrie, nach dem in einem Dreieck mit den Seitenlängen a, b und c gilt: $c^2 = a^2 + b^2 2ab\cos\gamma$, wobei γ den Gegenwinkel der Seite c bezeichnet.
- (c) Warum gilt für den Betrag des Skalarprodukts die Schwarzsche Ungleichung: $|(\vec{a} \cdot \vec{b})| \le |\vec{a}| \cdot |\vec{b}|$?