GOING FULL CIRCLE: QCD TO EFT TO DYNAMICALLY GENERATED RESONANCES AND BACK TO (LATTICE) QCD

MAXIM MAI

UNIVERSITY OF BERN (main) THE GEORGE WASHINGTON UNIVERSITY

Nuclear Physics Kolloquium 30.01.2025 Goethe University Frankfurt (Institute for Theoretical Physics)

DFG: Heisenberg Programme (project number: 532635001) TRR110: NSFC Grant No. 12070131001, DFG Project-ID 196253076 DOE: DE-SC0016582, DE-AC05-06OR23177, DE-FG02-95ER40907 , NSF: PHY-2012289

*) not part of the talk **) low-energy

OUTLINE

1. Motivation

Observation, Theory, ...

2. Dynamically Generated Resonances

Methodology, Examples, $\Lambda(1405)$, ...

3. Applications to LQCD

Chiral extrapolations, Quantization conditions...

4. Summary/Outlook

*) not part of the talk **) low-energy

BIG PICTURE

Protons/neutrons

- 99% of the mass of visible matter in the universe
- Building blocks: quarks & gluons (strong force)
- Part of a large class of particles: hadrons

BIG PICTURE

Protons/neutrons

- 99% of the mass of visible matter in the universe
- Building blocks: quarks & gluons (strong force)
- Part of a large class of particles: hadrons

Hydrogen spectrum (~)

Proton spectrum (?)

Observations

- many available data and ongoing experiments ullet
- resonances: \bullet
 - increased interaction rates (bumps)

 $\Delta(1232)$ Anderson/Fermi/...PhysRev.85.934

Observations

- many available data and ongoing experiments •
- resonances: \bullet
 - increased interaction rates (bumps)

Data: JLAB, ELSA, MAMI CLAS12, GlueX, ...

Observations

- many available data and ongoing experiments •
- resonances: \bullet
 - increased interaction rates (bumps)

Data: JLAB, ELSA, MAMI CLAS12, GlueX, ...

Observations

- many available data and ongoing experiments •
- resonances: \bullet
 - increased interaction rates (bumps)

Data: JLAB, ELSA, MAMI CLAS12, GlueX, ...

Observations

- many available data and ongoing experiments •
- resonances: \bullet
 - increased interaction rates (bumps)

Data: JLAB, ELSA, MAMI CLAS12, GlueX, ...

Observations

- many available data and ongoing experiments ullet
- resonances: \bullet
 - increased interaction rates (bumps)

- overlapping resonances
- kinematical effects (cusps/triangle singularities/...)

TRANSITION AMPLITUDES

S-matrix theory

- Unitarity
- Analyticity
- Crossing symmetry

Data: SAID: Phys. Rev. C 74 (2006) 045205 Model: MM et al. Phys.Rev.D 86 (2012) 094033

TRANSITION AMPLITUDES

1.0 $|S_{11}|$ 0.5 0.0 1.4

Boundary ($E \in \mathbb{R}$):

- Experiment •
- Lattice QCD •
- Effective Field Theories

Data: SAID: Phys. Rev. C 74 (2006) 045205 Model: MM et al. Phys.Rev.D 86 (2012) 094033

TRANSITION AMPLITUDES

S-matrix theory

- Unitarity
- Analyticity
- Crossing symmetry

1.0 $|S_{11}|$ 0.5 0.0 1.4

Boundary ($E \in \mathbb{R}$):

- Experiment \bullet
- Lattice QCD •
- Effective Field Theories

Poles on unphysical Riemann Sheets

• Universal resonance parameter

Maxim Mai / AEC BERN

13

OUTLINE

- 1. Motivation
 - Observation, Theory, ...

2. Dynamically Generated Resonances

Methodology, Examples, $\Lambda(1405)$, ...

3. Applications to LQCD

Chiral extrapolations, Quantization Conditions...

4. Summary/Outlook

*) not part of the talk **) low-energy

EXCITED HADRONS AND QCD

Low-energy regime of QCD = double trouble

- small relative momenta
- non-perturbative energy regime
- need to evaluate <u>infinitely</u> many diagrams \bullet

 $\begin{aligned} \mathcal{J} &= \frac{1}{4g^2} \left(\mathcal{G}_{\mu\nu} \mathcal{G}_{\mu\nu} + \frac{1}{j} \overline{g}_j \left(i\partial^{\mu} \mathcal{D}_{\mu} + m_j \right) g_j \right) \\ & \text{where } \left(\mathcal{G}_{\mu\nu}^{\alpha} \equiv \partial_{\mu} \overline{\mathcal{P}}_{\nu}^{\alpha} - \partial_{\nu} \overline{\mathcal{P}}_{\mu}^{\alpha} + i f_{be}^{\alpha} \overline{\mathcal{P}}_{\mu}^{b} \overline{\mathcal{P}}_{\nu}^{c} \right) \\ & \text{and } D_{\mu} \equiv \partial_{\mu} + i t^{\alpha} \overline{\mathcal{P}}_{\mu}^{\alpha} \\ & \overline{\mathcal{T}}_{hat's} it'. \end{aligned}$

http://frankwilczek.com/Wilczek_Easy_Pieces/ 298 QCD Made Simple.pdf

EXCITED HADRONS AND QCD

Low-energy regime of QCD = double trouble

- small relative momenta
- non-perturbative energy regime
- need to evaluate <u>infinitely</u> many diagrams

Effective Field Theory (CHPT)

- Effective/Hadronic degrees of freedom
- Infinitely many low-energy constants
- Well-defined power counting
- Benchmark for many low-energy hadronic interactions **Reviews:**
 - V. Bernard and U.-G. Meißner, Ann. Rev. Nucl. Part. Sci. 57, 33 (2007)
 - V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008)
 - S. Scherer, Adv. Nucl. Phys. 27, 277 (2003)

 $\begin{aligned} \mathcal{J} &= \frac{1}{4g^2} \left(\mathcal{G}_{\mu\nu}^{\alpha} \mathcal{G}_{\mu\nu\nu}^{\alpha} + \frac{1}{2} \overline{g}_{j} \left(i \partial^{\mu} \mathcal{D}_{\mu} + m_{j} \right) q_{j} \right) \\ & \text{where } \mathcal{G}_{\mu\nu}^{\alpha} &= \partial_{\mu} \left(\overline{\mathcal{P}}_{\nu}^{\alpha} - \partial_{\nu} \right) \overline{\mathcal{P}}_{\mu}^{\alpha} + i f_{be}^{\alpha} \left(\overline{\mathcal{P}}_{\mu}^{b} \right) \overline{\mathcal{P}}_{\nu}^{c} \\ & \text{and } D_{\mu} &= \partial_{\mu} + i t^{\alpha} \overline{\mathcal{P}}_{\mu}^{\alpha} \\ & That's it ! \end{aligned}$

http://frankwilczek.com/Wilczek_Easy_Pieces/ 298_QCD_Made_Simple.pdf

 $Z[J] = \int [DU] e^{\int i d^4 x \, \mathscr{L}_{eff}(U,v,a,s,p)}$ $\mathscr{L}_{\phi} = \mathscr{L}_{\phi}^{(2)} + \mathscr{L}_{\phi}^{(4)} + \dots$ $\mathscr{L}_{\phi B} = \mathscr{L}_{\phi B}^{(1)} + \mathscr{L}_{\phi B}^{(2)} + \mathscr{L}_{\phi B}^{(3)} + \dots$

Weinberg (1979) Gasser, Leutwyler (1981)

EXAMPLE: BARYON CHPT

Meson-baryon scattering from CHPT

MM/P.C.Bruns/Ulf-G. Meißner/B.Kubis Phys.Rev.D 80 (2009) 094006

- full SU(3) dynamics near threshold
- agrees with experiment in many cases
- provides predictions for not measured channels

	Σ _{HB}	
-0.13	$+0.03 \\ -0.03$	
+0.26	$^{+0.03}_{-0.03}$	
-0.17	$+0.03 \\ -0.03$	
+0.23	$+0.03 \\ -0.03$	
-0.24	$+0.01 \\ -0.01$	

EXAMPLE: BARYON CHPT

Meson-baryon scattering from CHPT

MM/P.C.Bruns/Ulf-G. Meißner/B.Kubis Phys.Rev.D 80 (2009) 094006

- Fails for resonant (strangeness) channel
 - ► Kaon mass is large → convergence

 $\mathcal{L}_{\phi B}^{(2)} =$

• Resonance just below \overline{KN} threshold \rightarrow non-perturbat

$$\begin{aligned} b_{D/F} \langle \bar{B}[\chi_{+}, B]_{\pm} \rangle + b_{0} \langle \bar{B}B \rangle \langle \chi_{+} \rangle + b_{1/2} \langle \bar{B}[u_{\mu}, [u^{\mu}, B]_{\mp}] \rangle + b_{3} \langle \bar{B}\{u_{\mu}, \{u^{\mu}, B\}\} \rangle + b_{4} \langle \bar{B}B \rangle \langle u_{\mu}u^{\mu} \rangle \\ &+ i\sigma^{\mu\nu} \langle b_{5/6} \langle \bar{B}[[u_{\mu}, u_{\nu}], B]_{\mp} \rangle + b_{7} \langle \bar{B}u_{\mu} \rangle \langle u_{\nu}B \rangle) + \frac{ib_{8/9}}{2m_{0}} \langle \langle \bar{B}\gamma^{\mu}[u_{\mu}, [u_{\nu}, [D^{\nu}, B]]_{\mp}] \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, [u^{\nu}, [u^{\mu}, B]_{\mp}] \rangle \\ &+ \frac{ib_{10}}{2m_{0}} \langle \langle \bar{B}\gamma^{\mu}\{u_{\mu}, \{u_{\nu}, [D^{\nu}, B]\}\} \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, \{u^{\nu}, \{u_{\mu}, B\}\}] \rangle) + \frac{ib_{11}}{2m_{0}} \langle 2 \langle \bar{B}\gamma^{\mu}[D_{\nu}, B] \rangle \langle u_{\mu}u^{\nu} \rangle \\ &+ \langle \bar{B}\gamma^{\mu}B \rangle \langle [D_{\nu}, u_{\mu}]u^{\nu} + u_{\mu}[D_{\nu}, u^{\nu}] \rangle), \end{aligned}$$
ence
tive effect
$$a_{\bar{K}N}^{I=0} = \left((+0.53)_{\rm LO} + (+0.97)_{\rm NLO} + (-0.40 + 0.22i)_{\rm NNLO} + ... \right) \, {\rm fm} \, , \\ a_{\bar{K}N}^{I=1} = \left((+0.20)_{\rm LO} + (+0.22)_{\rm NLO} + (-0.26 + 0.18i)_{\rm NNLO} + ... \right) \, {\rm fm} \, . \end{aligned}$$

KNINTERACTION

Overarching impact

- Test of our understanding of QCD Modern/Upcoming experiments: CLAS12, Klong, SIS100
- Kaonic hydrogen/deuterium energy shift DAPHNE/DEAR...
- $\overline{K}NN \& \overline{K}NNN$ bound states (JPARC/...)

Review: Gal/Hungerford/Millener (2016); Iwasaki et al. Phys.Rev.C 110 (2024) 1, 014002, ...

• K^- in medium

Mareš et al. Acta Phys. Polon. B 51, 129 (2020), Hrtánkova et al. Phys.Lett. B 785, 90 (2018), ...

$>> K^{-}$ -condensate in NS >> Equation of State

Femtoscopy/Correlations

Michael Annan Lisa et al, Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402, L. Fabbietti et al., ARNPS 71 (2021), 377-402

Nucl. Phys. A 674, 553 (2000)

Extension to resonant channels/higher energies — Chiral **Unitary Approach**

- Good
 - Non-perturbative scheme
 - Record complex pole-positions (II Riemann Sheet)
 - Often works: $N(1535), N(1650), \Lambda(1405), \Lambda(1380), \ldots$

Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

Attention (model dependence)

Review: MM, Eur. Phys. J.ST 230 (2021) 6, 1593-1607

- Renormalisation
- Crossing symmetry

only perturbatively

- Power counting
- Choice of the interaction kernel

STATUS: $\Lambda(1405) \dots \Lambda(1380)$

"A curious case of a strangeness resonance" *

MM, Eur.Phys.J.ST 230 (2021) 6, 1593-1607

- Sub-($\bar{K}N$)-threshold $\Lambda(1405)$ resonance
- second state $\Lambda(1380)$ predicted from UCHPT
 - no direct experimental verification
 - indirectly through photoproduction experiments
 [CLAS] Moriya et al. Phys.Rev.Lett. 112 (2014) 8
 MM/Meißner Eur.Phys.J.A 51 (2015) 3, 30
 - confirmed by many critical tests & LQCD

Bulava et al. [BaSc] Phys.Rev.Lett. 132 (2024) 5, 051901

Models: Ikeda/Weise/Feijoo/MM/Meißner/Ramos/Hyodo/...

QUARK MASS DEPENDENCE

CHPT encodes quark mass dependence

• SU(3) limit provides a simpler resonance structure

Jido et al. Nucl.Phys.A 725 (2003); Garcia-Recio/Lutz/Nieves Phys.Lett.B 582 (2004) 49-54;

- 1 singlet + 2 octet poles
- LO/NLO UCHPT pole-"tracks" differ Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)
- Resonance *we virtual bound state we bound state*

(?) Lattice QCD

OUTLINE

- 1. Motivation
 - Observation, Theory, ...
- 2. Dynamically Generated Resonances

Methodology, Examples, $\Lambda(1405)$, ...

3. Applications with/to LQCD

Chiral extrapolations, Quantization Conditions...

4. Summary/Outlook

*) not part of the talk **) low-energy

LATTICE QCD (SPECTROSCOPY)

K. Wilson, Phys. Rev. D10 (1974) 2445, ... Introduction to lattice QCD: Course Rajan Gupta hep-lat/9807028 [hep-lat]

LATTICE QCD (SPECTROSCOPY)

Roadblocks

- discretized (Euclidean) space-time continuum extrapolation
- unphysical quark mass extrapolations tools from CHPT \bullet
- finite volume quantization conditions needed

K. Wilson, Phys. Rev. D10 (1974) 2445, ... Introduction to lattice QCD: Course Rajan Gupta hep-lat/9807028 [hep-lat]

LATTICE QCD (SPECTROSCOPY)

Roadblocks

- discretized (Euclidean) space-time continuum extrapolation ullet
- unphysical quark mass extrapolations tools from CHPT \bullet
- finite volume quantization conditions needed

Advantages

- QCD degrees of freedom (first principles)
- Experimentally inaccessible scenarios:
 - Unconventional quantum numbers (later...) \rightarrow
 - Three-body scattering/... (later...) \rightarrow
 - → Chiral trajectory (later ...)

K. Wilson, Phys. Rev. D10 (1974) 2445, ... Introduction to lattice QCD: Course Rajan Gupta hep-lat/9807028 [hep-lat]

- Finite volume calculations: no direct access to scattering quantities
- Real-valued energy eigenvalues
 - Shifted from free energies physical information
 - Relation to observables = **Quantization condition**

Review: MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

- Finite volume calculations: no direct access to scattering quantities
- Real-valued energy eigenvalues
 - Shifted from free energies physical information
 - Relation to observables = **Quantization condition**

one-way of thinking:

- on-shell states "feel" the box-size $\sim (ML)^n$
- off-shell configurations decay exponentially $\sim e^{-ML}$

Review: MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

- Finite volume calculations: no direct access to scattering quantities
- Real-valued energy eigenvalues
 - Shifted from free energies physical information
 - Relation to observables = **Quantization condition**

one-way of thinking:

- on-shell states "feel" the box-size $\sim (ML)^n$
- off-shell configurations decay exponentially $\sim e^{-ML}$

Review: MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

- Finite volume calculations: no direct access to scattering quantities
- Real-valued energy eigenvalues
 - Shifted from free energies physical information
 - Relation to observables = Quantization condition

• one-way of thinking:

- on-shell states "feel" the box-size $\sim (ML)^n$
- off-shell configurations decay exponentially $\sim e^{-ML}$

Review: MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

3-BODY

Generalization to 3-body states — Finite Volume Unitarity (FVU) approach

- 3-body unitarity accounts for all on-shell states
- genuine determinant condition
- Alternatives: RFT, NREFT RFT(Hansen/Sharpe 2014) NREFT(Rusetsky/Hammer/Pang 2017)
 - equivalence shown in different regimes Jackura et al. Phys.Rev.D 100 (2019) 3, 034508, Garofalo et al. JHEP 02 (2023) 252

Many new applications

proof of concepts and spin-less repulsive systems

MM/Doring Phys.Rev.Lett. 122 (2019) 6, Fischer et al. Eur.Phys.J.C 81 (2021) 5, Blanton, Lopez, Hansen, Briceno, ...

- Systems with left-hand cut Hansen et al. JHEP 06 (2024) 051, Dawid et al. JHEP 01 (2025) 060, Rusetsky, ...
- 3-body resonant systems (later ...) MM/Culver Phys.Rev.Lett. 127 (2021) 22 Yan et al. Phys.Rev.Lett. 133 (2024) 21

FVU
det
$$\begin{bmatrix} 2L^3 E_{\mathbf{p}} \left(\tilde{K}^{-1} - \Sigma^L \right) - B - C \end{bmatrix}^{\Lambda} \equiv 0$$

Eur.Phys.J.A 53 (2017) 1

APPLICATION I

Two pion system

- simplest 2-hadron system
- many LQCD results ulletNPLQCD; HadSpec; ETMC; GW-lattice; CP-PACS;....
- simultaneous description of all $\pi\pi$ interaction channels through CHPT – UCHPT

GWQCD: Guo et al. (2016) Guo et al. (2018) Culver et al. (2019) MM et al.(2019)

MM/Urbach/Meißner Phys.Rept. 1001 (2023) 1-66

Yan/MM/... Phys.Rev.Lett. 133 (2024) 21

 ρ

[GWQCD] MM/Culver/... Phys.Rev.D100(11)(2019) 114514

APPLICATION II

Meson-baryon systems ($\bar{K}N/\pi\Sigma/\pi\Lambda/K\Xi$)

• Available Lattice spectrum [BaSc] Bulava et al. Phys.Rev.Lett. 132 (2024) 5; 2307.13471

 $M_{\pi} \approx 200 \text{ MeV } M_K \approx 487 \text{ MeV}$ $M_{\pi}L = 4.181(16) \quad a = 0.0633(4)(6) \text{ fm}$

- Compare to UCHPT
 - Unified analysis LQCD+UCHPT+EXPERIMENT
 - ... mostly ok, but not always
 - ... ongoing work

APPLICATION II

CHPT encodes quark mass dependence

 Available Lattice spectrum [BaSc] Bulava et al. Phys.Rev.Lett. 132 (2024) 5; 2307.13471

 $M_{\pi} \approx 200 \,\mathrm{MeV} \,M_K \approx 487 \,\mathrm{MeV}$ $M_{\pi}L = 4.181(16)$ a = 0.0633(4)(6) fm

pole positions from available UCHPT approaches

Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)

APPLICATION III $\omega \to \pi\pi\pi$

Lattice QCD

- Nf = 2 + 1 Clover fermions
- 2/3 particle operators
- 2 pion masses ($\approx 210, 305 \text{ MeV}$) 2 volumes ($L^3 = 32^3, 48^3$)

APPLICATION III $\omega \to \pi\pi\pi$

Lattice QCD

- Nf = 2 + 1 Clover fermions
- 2/3 particle operators
- 2 pion masses ($\approx 210, 305 \text{ MeV}$) 2 volumes ($L^3 = 32^3, 48^3$)

Result

- Various EFT based ansatzes
- $\omega(782)$ becomes abound state at ~300 MeV
- at the physical point very close to the EXP value

APPLICATION III $\omega \rightarrow \pi \pi \pi$

Lattice QCD

- Nf = 2 + 1 Clover fermions
- 2/3 particle operators
- 2 pion masses ($\approx 210, 305 \text{ MeV}$) 2 volumes ($L^3 = 32^3, 48^3$)

Result

- Various EFT based ansatzes
- $\omega(782)$ becomes abound state at ~300 MeV
- at the physical point very close to the EXP value

SUMMARY / OUTLOOK

Effective Field Theories

- quark-mass dependence
- analytical tools
- dynamically generated resonances

S-matrix

- Mathematical constraints on transitions
- Universal resonance parameter

Lattice QCD:

- ab-initio calculations
- universal tool for physical und unphysical scenarios
- many new advances and results

UCHPT models

- $f_0(500), \rho(770), \ldots$ well established quark-mass dependence
- Two-pole structure: $\Lambda(1405),\Lambda(1380)$ discovered

Novel FVU 3b Quantization Condition

- pilot results on $3\pi (I = 3, 2..), a_1(1260), \phi^4, ...$
- Re-discovered $\omega(782)$ from QCD pole and chiral trajectories

<u>Outlook</u>

- *N*(1440), *DDπ*, ...
- spin-exotics
- Triangles/Strangeness $a_1(1420)$... first steps: hys.Rev.D 110 (2024), JHEP 10 (2024) 246
- UCHPT + LQCD $\Lambda(1405),\Lambda(1380)\,$ ongoing ...

SUMMARY / OUTLOOK

Effective Field Theories

- quark-mass dependence
- analytical tools
- dynamically generated resonances

S-matrix

- Mathematical constraints on transitions
- Universal resonance parameter
- Novel FVU 3b Quantization Condition

UCHPT models

• $f_0(500), \rho(770), \ldots$ well established quark-mass dependence

pilot results on

• $3\pi(I=3,2..), a_1(1260), \phi^4, DD\pi, \ldots$

Re-discovering $\omega(782)$ from QCD

• Poles and chiral trajectories

S MARTRIES

NOWENO

Lattice QCD:

- ab-initio calculations
- universal tool for physical und unphysical scenarios
- many new advances and results \bullet

Outlook

- $N(1440), DD\pi$,
- spin-exotics
- Triangles/Strangeness $a_1(1420)$... first steps: hys.Rev.D 110 (2024), JHEP 10 (2024) 246
- UCHPT + LQCD $\Lambda(1405), \Lambda(1380)$ ongoing ...

APPLICATIONS I

Meson-baryon scattering from CHPT

MM/P.C.Bruns/Ulf-G. Meißner/B.Kubis Phys.Rev.D 80 (2009) 094006

- full SU(3) dynamics near threshold
- agrees with experiment in many cases
- well controlled chiral extrapolation of Lattice QCD results ($\pi\Sigma$)

LQCD at unphysical pion masses Torok/Beane/Detmold/Luu/... Phys.Rev.D 81 (2010) 074506

AXIAL-VECTOR MESON*

Excited axial-vector meson: $a_1(1420)$

Observed by COMPASS/Belle in $\pi^-\pi^+\pi^-$ final state COMPASS:2015kdx, Rabusov:2023tna

Creation mechanisms:

- Excited state of $a_1(1260)^{\text{COMPASS:2020yhb}}$
- "Triangle singularity" $K^*(892)\overline{K} \xrightarrow{K} \pi f_0(980)$ Mikhasenko:2015oxp Review: Guo:2019twa Related: Dai:2018hqb, Dai:2018rra, Liang:2019jtr, Jing:2019cbw, Du:2021zdg, Duan:2023dky, Wang:2016dtb, Nakamura:2023obk, Zhang:2024dth, Achasov:2022onn, Nakamura:2023hbt, arXiv:1609.04133 [hep-ph].

Talks: J.J.Wu – Z.Zhang

3D • f

full 2- and 3-body re-scattering

• f

3b unitary formalism IVU

formalism to incorporate both hypothesis

for now: only kinematic/analytical properties (no spin)

Effect is small but distinguishable

Add spin, fit to the line-shapes ... in progress

ph]

42

VECTOR MESON

Mapping to infinite volume

3-body quantization condition

$$FVU$$

$$det \left[2L^{3}E_{p} \left(\tilde{K}^{-1} - \Sigma^{L} \right) - B - C \right]^{\Lambda} \equiv 0$$

$$MM/Döring$$
Eur.Phys.J.A 53 (2017) 12, 240

0.6

0.5

0.4

0.3

32

aE

- Volume-independent 2-,3-body force C, \tilde{K}
- saturated by meson s-channel interaction — EFT form

$$\begin{split} & \left[\tilde{K}^{-1}\right]_{p'\lambda',p\lambda} = \delta_{\lambda'\lambda}\delta_{p'p}\frac{\sigma_p - M_\rho^2}{2g^2} \,, \\ & \tilde{c}_{11} = \frac{6s(M_\rho^2 - \sigma_q + 6g^2 f_\pi^2)(M_\rho^2 - \sigma_p + 6g^2 f_\pi^2)}{64g^2\pi^3 f_\pi^6(s - M_\omega^2)} \,, \end{split}$$

H.Yan/MM/Garofalo/Meißner/Lui/Liu/Urbach: 2407.16659 [hep-lat]

Finite-volume spectrum = Energy eigenvalues

Current frontier: 3-body dynamics from LQCD

3-body Quantization Conditions1

➡ RFT / FVU / NREFT

many perturbatively interacting systems are studied2

 Rusetsky, Bedaque, Grießhammer, Sharpe, Meißner, Döring, Hansen, Davoudi, Guo.... Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

2) MM/Döring PRL122(2019); Blanton et al. PRL 124 (2020); Hansen et al. PRL 126 (2021);

$$0 = \det\left(L^3\left(\tilde{F}/3 - \tilde{F}(\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1}\tilde{F}\right)^{-1} + K_{\rm df},\right)$$

$$0 = \det \left(B_0 + C_0 - E_L \left(K^{-1} / (32\pi) + \Sigma_L \right) \right)$$
 FV

AXIAL-VECTOR MESON

Sadasivan/MM/... Phys.Rev.D 101 (2020);

OPTICAL POTENTIAL

Alternatively: bulk properties of int. spectra

double-limit prescription1

 $W^{-1}(E) = \lim_{\epsilon \to 0} \lim_{L \to \infty} W_L^{-1}(E + i\epsilon)$

- smoothing and inverse problem2
- typically many input (EEVs) required

Agadjanov/MM/.. JHEP 06 (2016)

STRANGENESS

Meson-baryon scattering from CHPT

MM/P.C.Bruns/Ulf-G. Meißner/B.Kubis Phys.Rev.D 80 (2009) 094006

- Fails for resonant (strangeness) channel
 - Kaon mass is large \rightarrow convergence
 - Relevant thresholds are widely separated \rightarrow converge
 - Resonance just below \overline{KN} threshold \rightarrow non-perturbation

• Extension to resonant channels/higher energies — Chiral Unitary Approach (**UCHPT**)

 $\mathcal{L}_{\phi B}^{(2)} =$

$$b_{D/F} \langle \bar{B}[\chi_{+}, B]_{\pm} \rangle + b_{0} \langle \bar{B}B \rangle \langle \chi_{+} \rangle + b_{1/2} \langle \bar{B}[u_{\mu}, [u^{\mu}, B]_{\mp}] \rangle + b_{3} \langle \bar{B}\{u_{\mu}, \{u^{\mu}, B\}\} \rangle + b_{4} \langle \bar{B}B \rangle \langle u_{\mu}u^{\mu} \rangle \\ + i\sigma^{\mu\nu} (b_{5/6} \langle \bar{B}[[u_{\mu}, u_{\nu}], B]_{\mp} \rangle + b_{7} \langle \bar{B}u_{\mu} \rangle \langle u_{\nu}B \rangle) + \frac{ib_{8/9}}{2m_{0}} (\langle \bar{B}\gamma^{\mu}[u_{\mu}, [u_{\nu}, [D^{\nu}, B]]_{\mp}] \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, [u^{\nu}, [u^{\nu}, [u^{\nu}, [u^{\mu}, B]_{\mp}]] \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, [u^{\nu}, [u^{\nu}, [u^{\mu}, B]_{\mp}] \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, B] \rangle \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, B] \rangle \langle u_{\mu}u^{\nu} \rangle \\ + \frac{ib_{10}}{2m_{0}} (\langle \bar{B}\gamma^{\mu}\{u_{\mu}, \{u_{\nu}, [D^{\nu}, B]\}\} \rangle + \langle \bar{B}\gamma^{\mu}[D_{\nu}, \{u^{\nu}, \{u_{\mu}, B\}\}] \rangle) + \frac{ib_{11}}{2m_{0}} (2 \langle \bar{B}\gamma^{\mu}[D_{\nu}, B] \rangle \langle u_{\mu}u^{\nu} \rangle \\ + \langle \bar{B}\gamma^{\mu}B \rangle \langle [D_{\nu}, u_{\mu}]u^{\nu} + u_{\mu}[D_{\nu}, u^{\nu}] \rangle),$$
ence
$$a_{\bar{K}N}^{I=0} = \left((+0.53)_{\rm LO} + (+0.97)_{\rm NLO} + (-0.40 + 0.22i)_{\rm NNLO} + a_{\bar{K}N}^{I=1} = \left((+0.20)_{\rm LO} + (+0.22)_{\rm NLO} + (-0.26 + 0.18i)_{\rm NNLO} + a_{\bar{K}N}^{I=1} \right) \right)$$

EXAMPLE $\Lambda(1405) \dots \Lambda(1380)$

Long history of experimental and theoretical efforts

- Sub-($\bar{K}N$)-threshold $\Lambda(1405)$ resonance
- second state $\Lambda(1380)$ predicted from UCHPT
- no direct experimental verification
- confirmed by many critical tests & LQCD

NNLO UCHPT	2023 Bulava et al. [LQCD] 2022 Sadasivan et al. 2022 Lu et al.	Klong 20xx SIDDHARTA2 2024	Kaon beam Kaonic Deu
	2019 Anisovich et al. 2018 Bayar et al. 2018 Revai et al.	AMADEUS 2022	K- absorptio
	2018 Sadasivan et al	AMADEUS 2018	
Lattice QCD	2016 Cieply et al. 2015 Hall et al. (LQCD)	CLAS 2015	in-flight cap
	2014 Mai/Meißner 2013 Roca/Oset	HADES 2013	
Production amplitudes	2013 Guo/Oller 2012 Mai/Meißner 2012 Ikeda/Hyodo/Weise		Photoprodu
	2001 Lutz, Kolomeitsev 2001 Oller/Meißner	COSY 2008	pp collision Kaonic Hydr
UCHPT	1998 Oset/Ramos 1997 Lutz		
Baryon ChPT	1995 Kaiser et al.		
ChPT	1985 Veitand et al.		
	1978 Isgur Karl	Hemingway 1985	K
Quark model			Sequen
R		Rutherford Lab 1980s	
0	1960 Dalitz/Tuan	LNL 1960s	Ш
Η̈́Η	1959 Dalitz/Tuan		Bubble
		Maxim Mai / AEC BER	N

le chamber

