Gertrude Stein about Oakland, California, ~ 1890:

"There's no there, there."

Beam Energy Scan at RHIC:

There *is* a there, there

But what is it?

Beam Energy Scan @ RHIC, down to $\sqrt{s/A} = 7$ GeV

Exp.'y, measure moments of pressure w.r.t. μ = quark chemical potential:

$$c_n = \frac{\partial^n}{\partial \mu^n} p(T, \mu)$$

Ratio of 4th/2nd moments: ~ 1 above 40 Gev, dips below 1, BIG increase from 19 to 7 GeV

The first "there"

N.B.: increase is due to p_{tr} *above* .8 GeV: *weird* if critical endpoint

Slice & Dice the moments with convolution correlators

Bill Llope, CPOD '17, STAR:

Consider two-particle correlations,

along the beam axis (rapidity y) and w.r.t. angle transverse to the beam (θ)

$$R_2 = \frac{\rho_2(y_1, y_2)}{\rho_1(y_1)\rho_2(y_2)} - 1$$

Integral of R_2 w.r.t. rapidities y_1 and y_2 is related to c_2 moment

Berger, NPB 85, '75; Carruthers & Sarcevic PRL 63, '89; M Jacob, Phys Rep 315, '99 Bzdak, 1108.0882; Bzdak & Teaney 1210.1965; Jia, Radhakrishnan & Zhou, 1506.03496 Ling & Stephanov, 1512.09125; Bzdak, Koch, & Strodthoff 1607.07375

The there, *there*

Lattice: no critical point nearby

Vovchenko, Steinheimer, Philipsen, Stoecker 1711.0126:

Cluster Expansion Method (CEM) for baryon fluctuations on the lattice: (not Taylor expansion in powers of μ , powers asymptotic behavior in μ .) *No* critical endpoint accessible by experiment: *so what is it?*

Matrix models & a (pseudo-) Lifshitz point in QCD

Chiral matrix model: marrying a linear sigma model, for the chiral transition plus a "matrix model", to characterize deconfinement RDP & VV Skokov, 1604.00002

Quarkyonic chiral spirals and a (pseudo-) Lifshitz point in QCD: RDP, VV Skokov & A Tsvelik, 1712.x Fluctuations from a pseudo-Lifshitz point at low energies?

Finite size effects for baryon # cumulants: G Almasi, VV Skokov, & RDP, 1612.04416
Tetraquarks in QCD: two chiral order parameters, two chiral transitions? RDP & VV Skokov 1606.04111
Solution for SU(∞): RDP & VV Skokov; 1205.0545
S Lin, RDP & VV Skokov, 1301.7432; H Nishimura, RDP & VV Skokov, 1712.04465

Matrix model for deconfinement

Polyakov Loop:
$$\ell = \frac{1}{3} \operatorname{tr} \mathcal{P} \exp\left(ig \int_{0}^{1/T} A_{0} d\tau\right)$$

Simplest approximation to give a non-trivial loop: constant, diagonal A₀:

$$A_0^{cl} = \frac{2\pi T}{3g} \lambda_3 q(T) \qquad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Depends upon single function, q(T), fixed from pressure(T).

Only need two parameters to fit pressure, then compute

Matrix model for pure glue

To one loop order, Stefan-Boltzmann + potential for q

$$\mathcal{V}_{pert}(q) = \frac{2\pi^2}{3} T^4 \left(-\frac{4}{15} + \sum_{a,b} q_{ab}^2 \left(1 - q_{ab}\right)^2\right), \ q_{ab} = |q_a - q_b|_{mod 1}$$

From lattice data for pure glue, assume non-pert. potential ~ T^2 :

$$\mathcal{V}_{non}(q) = \frac{2\pi^2}{3} T^2 T_d^2 \sum_{a,b} (-c_1 q_{ab} (1 - q_{ab}) - c_2 q_{ab}^2 (1 - q_{ab})^2 + c_3)$$

- From lattice for pure glue: $T_d = 270 \text{ MeV}$.
- Constant term ~ c_3 most important for T > 1.2 T_d.
- q's only matter for T < $1.2 T_d$: *narrow* transition region
- Dumitru, Guo, Hidaka, Korthals-Altes & RDP, 1011.3820 & 1205.0137 +

Chiral symmetry

For 3 flavors of massless quarks,

$$\mathcal{L}^{qk} = \overline{q} \not\!\!\!D q = \overline{q}_L \not\!\!\!D q_L + \overline{q}_L \not\!\!\!D q_L , \ q_{L,R} = \frac{1 \pm \gamma_5}{2} q$$

Classically, global flavor symmetry of $SU(3)_L \ge SU(3)_R \ge U(1)_A$,

$$q_L \to \mathrm{e}^{-i\alpha/2} U_L q_L \ , \ q_R \to \mathrm{e}^{+i\alpha/2} U_R q_R$$

Simplest order parameter for χ sym. breaking: a,b... = flavor. A,B... = color

$$\Phi^{ab} = \overline{q}_L^{bA} q_R^{aA} \qquad \Phi \to e^{+i\alpha} U_R \Phi U_L^{\dagger}$$

Quantum mechanically, axial U(1)_A is broken by instantons +.... to Z(3)_A at T=0 't Hooft instanton vertex is invariant under Z(3)_A:

 $\det \Phi \to \mathrm{e}^{3i\alpha} \det \Phi$

As $T \rightarrow \infty$, U(1)_A approximately restored as $1/T^{7 \rightarrow 9}$.

Usual linear sigma model

Linear sigma model for Φ :

$$\mathcal{V}_{\Phi} = m^2 \operatorname{tr} \left(\Phi^{\dagger} \Phi \right) - c_A \left(\det \Phi + \mathrm{c.c.} \right) + \lambda \operatorname{tr} \left(\Phi^{\dagger} \Phi \right)^2$$

Drop $(tr \Phi^+\Phi)^2$: fits show coefficient is *really* small

Mass, quartic terms U(1)_A invariant; det Φ only under Z(3)_A.

For light but massive quarks, need to add

$$\mathcal{V}_{H}^{0} = -\operatorname{tr}\left(H\left(\Phi^{\dagger} + \Phi\right)\right)$$

So $m_{\pi}^2 \sim H$, etc. Standard linear sigma model.

Chiral matrix model

Quarks generate potential in "q", so *must* couple Φ to quarks: $P_{L,R} = (1 \pm \gamma_5)/2$ $\mathcal{L}_{\Phi}^{qk} = \overline{q} \left(\not D + \mu \gamma^0 + y \left(\Phi \mathcal{P}_L + \Phi^{\dagger} \mathcal{P}_R \right) \right) q$

Use matrix model from pure glue, with *same* $T_d = 270$ MeV.

With quarks, T_d is *just* a parameter in a potential, *not* deconfining T_c .

From quark loop, need logarithmic term in Φ :

$$\mathcal{V}_{\Phi}^{log} = \kappa \operatorname{tr}\left((\Phi^{\dagger}\Phi)^2 \, \log\left(\frac{M^2}{\Phi^{\dagger}\Phi}\right)\right)$$

To 1 loop order, $\kappa = 3y^4/(16 \pi^2)$; y is a free parameter, fit to T_y.

Log term complicates things, results similar to that for $\kappa = 0$.

New symmetry breaking term

With usual symmetry breaking, at high T,

$$\mathcal{V}^{eff} \approx -h \phi + \frac{y^2 T^2}{12} \phi^2 + \dots, T \to \infty$$

1st term SB'g, 2nd quark fluctuations. But then at high T, no symmetry breaking!

$$\phi \sim \frac{12h}{y^2 T^2} \ , \ m_{qk} \sim y \phi \sim \frac{1}{T^2}$$

Solve by adding a new term by hand

$$\mathcal{V}^{eff} \sim h \phi - \frac{y}{6} m_0 T^2 \phi + \frac{y^2 T^2}{12} \phi^2 + \dots$$

So $\varphi \sim m_0/y$ at high T, $m_{qk} \sim m_0$. In QCD,

Solution at T = 0

Consider first the SU(3) symmetric case, $h_u = h_d = h_s$. Spectrum. 0⁻: singlet η ' & octet π . 0⁺: singlet σ and octet a_0 . Satisfy a 't Hooft relation:

$$m_{\eta'}^2 - m_{\pi}^2 = m_{a_0}^2 - m_{\sigma}^2$$

The anomaly moves $\eta' up$ from the π , but also moves σ *down* from the a_0 .

QCD: $\langle \Phi \rangle = (\Sigma_u, \Sigma_u, \Sigma_s)$. From:

$$f_{\pi} = 93$$
, $m_{\pi} = 140$, $m_{K} = 495$, $m_{\eta} = 540$, $m_{\eta'} = 960$

Determine:

$$\Sigma_u = 46 , \ \Sigma_s = 76 , \ h_u = (97)^3 , \ h_s = (305)^3 , \ c_A = 4560$$

 $m^2 = (538)^2 - 121y^4 , \ \lambda = 18 + 0.04 y^4$

One free parameter, Yukawa coupling "y", fix from T_{χ} .

Varying the Yukawa coupling

Solution at $T \neq 0$

To eliminate u.v. divergences, lattice uses substracted condensates

$$\Delta_{u,s}^{lattice}(T) = \frac{\langle \overline{q}q \rangle_{u,T} - (m_u/m_s) \langle \overline{q}q \rangle_{s,T}}{\langle \overline{q}q \rangle_{u,0} - (m_u/m_s) \langle \overline{q}q \rangle_{s,0}}$$

In the chiral-matrix $(\chi$ -M) model use this to fix y = 5.

$$\Delta_{u,s}^{\chi-M}(T) = \frac{\Sigma_u(T) - (h_u/h_s)\Sigma_s(T)}{\Sigma_u(0) - (h_u/h_s)\Sigma_s(0)}$$

Meson masses vs T

Usual pattern for $m_u = m_d \neq m_s$. y = 5. U(1)_A breaking persists to high T, unphysical.

T

Pressure, interaction measure vs T

Order parameters, chiral and deconfining

1.0Polyakov loop, 0.8 model 0.6 0.4 0.6 $\Sigma_{\rm u}(T)/\Sigma_{\rm u}(0)$ Σ_u / Σ_{u0} 0.2 Σ_s / Σ_{s0} 0.0 100 200 300 400But Polyakov loop from lattice

Petreczky & Schadler, 1509.07874 is *much* smaller than in model.

Persistent discrepancy, also in pure gauge. *What's up with lattice loop?* Chiral matrix model:

Chiral and deconfining order parameters are *strongly* correlated

Susceptibilities, chiral and deconfining

Largest peak for up-up; strange-strange small. In QCD, notable peaks for loop-up & loop-loop, *strongly* correlated with up-up

loop-loop and loop-antiloop finite 0.12 $\chi_{\Sigma_u\Sigma_u}T_\chi^2$ $\chi_{\Sigma_s\Sigma_s}T_\chi^2$ 0.10up-up $\chi_{\Sigma_u\Sigma_s}T_\chi^2$ 0.08 $\chi_{ll}T^2T_{\chi}^2$ 0.06 $\chi_{l\Sigma_u}T_{\chi}^4$ loop-antiloop 0.04 $\chi_{l\Sigma_s}T_{\chi}^4$ up-up 0.020.00-0.02loop-up -0.04 L

150

100

200

250

300

350

450

500

400

In chiral limit: loop-up suscep. *diverges*. Sasaki, Friman, Redlich ph/0611147

6th order baryon susceptibility

In χ -M model, χ_6 shows *non*-monotonic behavior near T_{χ} .

In HTL, χ_6 is very small (because m=0)

σ model: including change in Σ_u , but *not* in loop. Change in χ_6 *much* smaller.

Baryon susceptibilities: 2nd & 4th

Ratios of moments, vs Columbia lattice

Lattice moments, Frankfurt

Vovchenko, Steinheimer, Philipsen, Stoecker 1711.0126:

What's up with the lattice loop?

Looked at *wide* variety of variations on χ -M models. Below: χ_2 from chiral matrix model, lattice,

and fitting the loop to the lattice value, then computing χ_2 .

If the lattice loop is right, then χ_2 is too small.

Quarkyonic & 1-D patches

Cold, quark matter as "Quarkyonic" matter: McLerran & RDP 0706.2191 Fermi surface ~ *confined*, deep in Fermi sea ~ perturbative

Valid at large N_c : $N_c = 3$? At T $\neq 0$, $\mu = 0$: $\Lambda_{ren} \sim 2 \pi$ T We suggest: T = 0, $\mu \neq 0$: quarkyonic for $\mu_{quark} < 1$ GeV, for any N_c , N_f At $\mu \neq 0$, T << μ confining potential ~ $1/(p^2)^2$ tends to form 1-dim *patches* of chiral spirals in effective 1-dim theory Kojo, Hidaka, McLerran & RDP 0912.3800; Kojo, RDP & Tsvelik 1007.0248; Kojo, Hidaka, Fukushima, McLerran, RDP 1107.2124; RDP, Skokov & Tsvelik 1712.x

Width of patch ~ Λ_{QCD} , so for large μ , Fermi surface is covered with patches

Chiral Spirals in 1+1 dimensions

Chiral Spiral (CS) ~ Migdal's pion condensate:

 $(\sigma, \pi^0) = f_{\pi}(\cos(k_0 z), \sin(k_0 z))$

Ubiquitous in 1+1 dimensions:Basar, Dunne & Thies, 0903.1868; Dunne & Thies 1309.2443+ ... *Wealth* of exact solutions, phase diagrams...

Chiral Spirals in 3+1 dimensions

In 3+1, *common* in NJL models:Nickel, 0902.1778 +Buballa & Carignano 1406.1367 + ...

In reduction to 1-dim, $\Gamma_5^{1-\text{dim}} = \gamma_0 \gamma_z$, so chiral spiral between $\overline{q}q \& \overline{q}\gamma_0 \gamma_z \gamma_5 q$

Fluctuations in Chiral Spirals

In Chiral Spiral, $\langle \phi \rangle \neq 0$ *locally* but $\langle \phi \rangle = 0$ *globally*.

Spon. breaking of global symmetry => interactions of Goldstone Bosons ~ ∂^2

In CS, spon. bkg's of global *plus* rotational sym. implies interactions in transverse momenta ~ ∂_{\perp}^2 *cancel*. Interactions ~ $(\partial_{\perp}^2)^2 \sim \partial_{\perp}^4$. U = GB:

$$\mathcal{L}_{\rm CS} = f_{\pi}^2 |(\partial_z - ik_0)U|^2 + \kappa |\partial_{\perp}^2 U|^2 + \dots$$

Hidaka, Kamikado, Kanazawa & Noumi 1505.00848; Nitta, Sasaki & Yokokura 1706.02938 Transverse fluctuations *dis*order: *large* fluctuations about $k_z \sim k_0$:

$$\int d^2 k_{\perp} \, dk_z \, \frac{1}{(k_z - k_0)^2 + (k_{\perp}^2)^2} \sim \int d^2 k_{\perp} \, \frac{1}{k_{\perp}^2} \sim \log \Lambda_{\rm IR}$$

No true long range order (Landau-Peierls) ~ *smectic liquid crystal*

Varieties of liquid crystals

Nematics: rotational ordering (vector with no direction) Smectic: rotational ordering and in planes disordered in the planes ("liquid") Cholesteric: chiral ordering (with twist)

Increasing opacity

Smectic something like patches in QCD

Smectic – nematic transition has analogy, to follow (1st order from reduction to 1-dim)

Standard phase diagram

Usual critical dimensions

 φ^4 : $d_{upper} = 4$: expand in $d = 4 - \varepsilon$ dimensions

$$\int d^4k \; \frac{1}{(k^2)^2} \sim \log \Lambda_{\rm UV}$$

 φ^4 : $d_{lower} = 2$: expand in 2 + ε dimensions always disordered when d < 2

$$\int d^2k \; \frac{1}{k^2} \sim \log \Lambda_{\rm IR}$$

 ϕ^6 : $d_{critical} = 3$: at tricritical point, log corrections

$$\int d^3k_1 \int d^3k_2 \, \frac{1}{(k_1)^2 (k_2)^2 (k_1 + k_2)^2} \sim \log \Lambda_{\rm UV}$$

Lifshitz points

To get a Chiral Spiral (CS):

$$\mathcal{L}_{CS} = (\partial_0 \phi)^2 + Z(\partial_i \phi)^2 + \frac{1}{M^2} (\partial_i^2 \phi)^2 + m^2 \phi^2 + \lambda \phi^4$$

Need higher (spatial) derivatives for stability. Then CS occurs when Z < 0. Can*not* have higher derivatives in time or theory is acausal. In gravity, models with higher derivatives are renormalizable:

$$\mathcal{L}_{\text{ren.gravity}} = \frac{1}{16\pi G} R + \alpha_1 R^2 + \alpha_2 R_{\mu\nu}^2$$

but acausal. Hořava-Lifshitz gravity: add higher derivatives only in space Hořava 0901.3775 + ...

$$\mathcal{L}_{\text{Horava-Lifshitz}} = \frac{1}{16\pi G}R + \beta_1 R_{ij}^2 + \dots$$

Only two time derivatives, so causal. Flows into Einstein gravity in the infrared.

Lifshitz phase diagram in mean field theory

Phase diagram in Z & m²: *three* phases, symmetric, broken, *and* Chiral Spiral Hornreich, Luban, Shtrikman, PRL '75, Hornreich J. Magn. Matter '80...Diehl, cond_mat/0205284 + ...

Symmetric to CS: 1D (Brazovski) fluctuations

Consider m² > 0, Z < 0: minimum in propagator at *non*zero momentum Brazovski '75; Hohenberg & Swift '95 + ... ;

Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Yoshiike, Lee & Tatsumi 1702.01511

$$\Delta^{-1} = m^2 + Z \, k^2 + k^4 / M^2$$
$$= m_{\text{eff}}^2 - 2 Z \, k_z^2 + (k_\perp^2)^2 / M^2$$

k=(k_{\perp},k_z-k₀): *no* **terms in k_{<math>\perp}²,** *only* **(k_{\perp}²)².**</sub>

Due to spon. breaking of rotational sym.

$$\int d^3k \; \frac{1}{k_z^2 + m_{\text{eff}}^2 + \dots} \sim M^2 \int \frac{dk_z}{k_z^2 + m_{\text{eff}}^2} \sim \frac{M^2}{m_{\text{eff}}}$$

Effective reduction to 1-dim for any spatial dimension d, any global symmetry

1st order transition in 1-dim.

Strong infrared fluctuations in 1-dim., both in the mass:

$$\Delta m^2 \sim \lambda \int d^3k \, \frac{1}{k_z^2 + m_{\text{eff}}^2 + \dots} \sim \lambda \, \frac{M}{m_{\text{eff}}}$$

and for the coupling constant:

$$\Delta \lambda \sim -\lambda^2 \int \frac{d^3k}{(k_z^2 + m_{\text{eff}}^2 + \dots)^2} \sim -\lambda^2 M^3 \int_{m_{\text{eff}}} \frac{dk_z}{k_z^4} \sim -\lambda \frac{M^3}{m_{\text{eff}}^3}$$

Cannot tune m_{eff}^{2} to 0: λ_{eff} goes negative, 1st order trans. induced by fluctuations

Not like other 1st order fluc-ind'd trans's: just that in 1-d, $m_{eff}^2 \neq 0$ always

Lifshitz phase diagram, with eff. 1-D fluc.'s

What about fluctuations at the Lifshitz point?

Critical dimensions at the Lifshitz point

At the Lifshitz point, Z=m=0, massless propagator ~ $1/k^4$

$$\mathcal{L}_{\text{Lifshitz}} = (\partial^2 \phi)^2 + \lambda \phi^4$$

 $d_{upper} = 8$: expand in $d = 8 - \varepsilon$ dimensions $\int d^8 k \ \frac{1}{(k^4)^2} \sim \log \Lambda_{\rm UV}$

 $d_{lower} = 4$: expand in $d = 4 + \varepsilon$ dimensions

$$\int d^4k \; \frac{1}{k^4} \sim \log \Lambda_{\rm IR}$$

d = 3 < d_{lower}: there is *NO* (isotropic) Lifshitz point in *three* dimensions ...+ Bonanno & Zappala, 1412.7046; Zappala, 1703.00791 Infrared fluctuations *always* generate a mass gap *dynamically*.

Phase diagram without a Lifshitz point?

Have three phases, three lines of phase transition far from the would be Lifshitz point. *How can they connect?*

A: looks like Lifshitz point, but isn't

All three lines connect at a "pseudo"-Lifshitz point.

As terminus of 2nd order line, $m^2 = 0$. So at pseudo-Lifshitz point, $Z \neq 0$ Why do fluctuations drive symmetric-CS transition 1st order if $Z \neq 0$?

B: 1st order line between broken/CS phases ends

Crossover between broken and CS phases? But $\langle \phi \rangle \neq 0$ in the broken phase, and $\langle \phi \rangle = 0$ for a Chiral Spiral. Crossover seems unlikely, unless fluctuations are *small* (so long range order in CS phase)

C: Brazovski 1st order CS/sym. line ends

Chiral spiral has *no* long range order, so *when* fluctuations are large, possible to have just *crossover* between CS & symmetric phases. Brazikovski 1st order line ends in critical endpoint.

Novel tricritical point where 2nd order line joins to 1st order, at small Z.

Lifshitz points in inhomogenous polymers: mean field Fredrickson & Bates, Jour. Polymer Sci. 35, 2775 (1997); Fredrickson, "The equilibrium theory of inhomogenous polymers", pg. 390.

Polymers A & B, for blend with A, B, & A+B

Have disordered, separated, and "lamellar" phases

Inhomogenous polymers: no Lifshitz point

From both experiment & numerical simulations, Lifshitz point wiped out by fluctuations: instead a "bicontinuous microemulsion", BµE, appears "structured, fluctuating disordered phase"

Phase diagram for QCD in T & μ : usual picture

Two phases, one Critical End Point (CEP)

between crossover and line of 1st order transitions

Ising fixed point, dominated by massless fluctuations at CEP

Phase Diagram with Chiral Spirals

Now *three* phases. If model "C", *two* 1st order lines and *two* CEP's "Pseudo" Lifshitz point with *large* fluctuations.

In CS, large fluc.'s at *non*zero momenta, $\sim k_0$.

Beam Energy Scan and cumulants

- To look for Critical End Point, typically compute cumulants
- Expectation from theory, to right: corrections to c_3 are *positive*
- But STAR finds that the corrections to c_3 , below, are *negative*

30 40

20

1.05

1.00

0.95

0.90

0.85

5

67810

Fluctuations at 7 GeV

Beam Energy Scan, down to 7 GeV.

Fluctuations *MUCH* larger when up to 2 GeV than to 0.8 GeV

Trivial multiplicity scaling? ... or first evidence for a Chiral Spiral?!

STAR: fig. 14,https://drupal.star.bnl.gov/STAR/files/STAR_iTPC_proposal_06_09_2015.pdf

Suggestion for experiment

- For any sort of periodic structure (1D, 2D, 3D...),
- fluctuations concentrated about some characteristic momentum k₀
- So "slice and dice": bin in intervals, 0 to .5 GeV, .5 to 1., etc.
- If peak in fluctuations in a bin not including zero, may be evidence for $k_0 \neq 0$.
- If periodic structure, fluctuations must go up as \sqrt{s} goes down, since μ increases

NJL models and Lifshitz points

Consider Nambu-Jona-Lasino models.

Nickel, 0902,1778 & 0906.5295 + + Buballa & Carignano 1406.1367

$$\mathcal{L}_{\rm NJL} = \overline{\psi}(\partial \!\!\!/ + g\sigma)\psi + \sigma^2$$

Integrating over ψ ,

$$\log(\partial + g\sigma) \sim \ldots + \kappa_1 ((\partial \sigma)^2 + \sigma^4) + \kappa_2 ((\partial^2 \sigma)^2 + \sigma^2 (\partial \sigma)^2 + \sigma^6) + \ldots$$

Consequently, in NJL @ 1-loop, *tricritical = Lifshitz point*.

Above due to scaling $\partial \to \xi \partial$, $\sigma \to \xi \sigma$. Special to including only σ at one loop.

Not generic: violated by the inclusion of more fields, to two loop order, etc.