Measuring and interpreting anisotropic flow
Outline

- Intro: what is flow
- Why should you care?
- How do we measure it?
- What have we learned so far?
- Where do we go from here?
Heavy-ion collisions

adapted from Chun Shen

Initial energy
density

Hadronization

QGP phase

Hadron
gas phase

Kinetic
freeze-out

final detected
particle distributions

τ ~ 0 fm/c

viscous hydro

collision evolution

τ ~ 1 fm/c

hadronic cascade

τ ~ 10 fm/c

free streaming

τ ~ 10^{15} fm/c
What is flow?

Anisotropic Flow: anisotropies in the azimuthal distribution of particles in momentum space.
Why does it flow?

It is commonly interpreted as the result of the hydrodynamic behaviour of strongly-interacting QCD matter:

- strongly-interacting non-spherical system
 ⇒ anisotropic pressure ⇒ anisotropic flow

Spatial anisotropies of the initial system are due to:

- event-by-event fluctuations
- impact parameter
Why does it flow?

It is commonly interpreted as the result of the hydrodynamic behaviour of strongly-interacting QCD matter:

- strongly-interacting non-spherical system
 -\rightarrow anisotropic pressure -\rightarrow anisotropic flow

\[\rho \frac{d\vec{v}}{dt} = -\vec{\nabla}P \]
Why does it flow?

It is commonly interpreted as the result of the hydrodynamic behaviour of strongly-interacting QCD matter:

- strongly-interacting non-spherical system
 -> anisotropic pressure -> anisotropic flow

\[\rho \frac{d\vec{v}}{dt} = -\vec{\nabla} P \]

Spatial anisotropies

Hydro

Momentum anisotropies
Why does it flow?

It is commonly interpreted as the result of the hydrodynamic behaviour of strongly-interacting QCD matter:

- strongly-interacting non-spherical system
 \(\rightarrow \) anisotropic pressure \(\rightarrow \) anisotropic flow

Spatial anisotropies of the initial system are due to:

- event-by-event fluctuations

from B. Schenke
Why does it flow?

It is commonly interpreted as the result of the hydrodynamic behaviour of strongly-interacting QCD matter:

- strongly-interacting non-spherical system → anisotropic pressure → anisotropic flow

Spatial anisotropies of the initial system are due to:

- event-by-event fluctuations
- impact parameter

in HI collisions, strong elliptical anisotropy, depending on centrality / impact parameter.
How do we quantify it?

Flow is quantified in terms of Fourier coefficients:

\[\frac{dN}{d\varphi} \propto 1 + \sum_{n=1}^{+\infty} 2v_n \cos(n(\varphi - \Psi_{RP})) \]

Diagram:
- **V1:** directed flow
- **V2:** elliptic flow
- **V3:** triangular flow
Symmetry planes

There’s not only the reaction plane:

Fluctuating initial conditions

Each harmonic (v_n) develops along its corresponding symmetry plane ($\psi_n \neq \psi_{RP}$)
a First Look

Impact parameter dominated fluctuations

fluctuations dominated
Outline

- Intro: what is flow
- Why should you care?
- How do we measure it?
- What have we learned so far?
- Where do we go from here?
a Realistic Medium

Whatever information you want to extract about the QGP from experimental data requires a realistic modelling of a Heavy-Ion collision:

- Energy loss: jets, heavy flavour
- Charmonia
- Strangeness production
- Photons / dileptons

Most of what we know so far has been inferred from soft hadron observables: p_T spectra, flow
a Realistic Medium

Whatever information you want to extract about the QGP from experimental data requires a realistic modelling of a Heavy-Ion collision:

- Energy loss: jets, heavy flavour
- Charmonia
- Strangeness production
- Photons / dileptons

Most of what we know so far has been inferred from soft hadron observables: p_T spectra, flow
Outline

- Intro: what is flow
- Why should you care?
- How do we measure it?
- What have we learned so far?
- Where do we go from here?
How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function ($\Delta \eta, \Delta \phi$)
- Scalar Product / Event Plane methods
- Multi-particle cumulants
How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function \((\Delta \eta, \Delta \varphi)\)
- Flow
- Jets (near-side and away-side)

\[
S(\Delta \varphi, \Delta \eta) = \frac{1}{N_{\text{trig}}} \frac{d^2N}{d\Delta \varphi d\Delta \eta}
\]

How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function ($\Delta \eta, \Delta \phi$)

How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function ($\Delta\eta, \Delta\phi$)

"the Double Ridge"

How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function ($\Delta \eta, \Delta \phi$)
- Scalar Product / Event Plane methods

correlate tracks with an event plane (ψ_{EP}) reconstructed with an independent detector:

$$v_n\{EP\} = \frac{1}{R} \langle \cos(n(\phi - \psi_{EP})) \rangle$$

N.B. conceptually, it’s again a 2-particle correlation
How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function ($\Delta \eta, \Delta \phi$)
- Scalar Product / Event Plane methods

can be used to correlate reconstructed tracks with event planes from forward detectors (scintillators/calorimeters)
How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function \((\Delta \eta, \Delta \varphi)\)
- Scalar Product / Event Plane methods
- Multi-particle cumulants
 - Provide additional information on flow fluctuations
 - Analytically suppress background
How do we measure it?

Flow can be measured with a variety of techniques:

- 2-particle correlation function ($\Delta \eta, \Delta \phi$)
- Scalar Product / Event Plane methods
- Multi-particle cumulants
 - Provide additional information on flow fluctuations
 - Analytically suppress background
Multi-particle cumulants

Possible to measure different cumulants of the underlying flow:

2-particle: $\langle\langle 2 \rangle\rangle = \langle\langle e^{in(\varphi_1 - \varphi_2)} \rangle\rangle = \langle v_n^2 \rangle$

4-particle: $\langle\langle 4 \rangle\rangle = \langle\langle e^{in(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)} \rangle\rangle = \langle v_n^4 \rangle$

by definition:

$\nu_n\{2\} = \sqrt{\langle v_n^2 \rangle}$

$\nu_n\{4\} = \frac{4}{\sqrt{2}}\sqrt{\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle}$

if ν_n is constant

$\nu_n\{4\} \neq \nu_n\{2\} \neq \langle \nu_n \rangle$ if ν_n fluctuates
Multi-particle cumulants

Possible to measure different cumulants of the underlying flow:

2-particle: \[\langle\langle 2 \rangle\rangle = \langle\langle e^{i n (\varphi_1 - \varphi_2)} \rangle\rangle = \langle v_n^2 \rangle \]

4-particle: \[\langle\langle 4 \rangle\rangle = \langle\langle e^{i n (\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)} \rangle\rangle = \langle v_n^4 \rangle \]

\[v_n\{2\} = \sqrt{\langle v_n^2 \rangle} \]

\[v_n\{4\} = 4 \sqrt{2 \langle v_n^2 \rangle^2 - \langle v_n^4 \rangle} \]

by definition:

\[v_n\{4\} = v_n\{2\} = \langle v_n \rangle \quad \text{if } v_n \text{ is constant} \]

\[v_n\{4\} \neq v_n\{2\} \neq \langle v_n \rangle \quad \text{if } v_n \text{ fluctuates} \]
Multi-particle cumulants

Up to order σ^2:

$$v_2\{2\} = \langle v_2 \rangle + \frac{1}{2} \frac{\sigma^2}{\langle v_2 \rangle}$$

$$v_2\{4\} = v_2\{6\} = \ldots v_2\{n\} = \langle v_2 \rangle - \frac{1}{2} \frac{\sigma^2}{\langle v_2 \rangle}$$

$v_2\{2\} \neq v_2\{4\}$

flow fluctuations!

ALICE, QM '11
the Flow Hypothesis

2- and multi-particle correlations are based on one simple assumption (a.k.a. the flow hypothesis)

\[
\langle e^{i n (\varphi_1 - \varphi_2)} \rangle = \langle e^{i n (\varphi_1 - \Psi_n - (\varphi_2 - \Psi_n))} \rangle = \\
= \langle e^{i n (\varphi_1 - \Psi_n)} \rangle \langle e^{i n (\varphi_2 - \Psi_n)} \rangle = \langle \nu_n^2 \rangle
\]

* Correlations among produced particles are induced only by correlation of each particle with the event planes.
Non-flow

\[v_2 > 0, \ v_2 \{2\} > 0 \quad v_2 = 0, \ v_2 \{2\} = 0 \quad v_2 = 0, \ v_2 \{2\} > 0 \]

short-range correlations (jets, resonances) unrelated to the reaction plane enter into multi-particle correlations:

\[v_2 \{2\} = \sqrt{\langle \langle e^{i2(\varphi_1 - \varphi_2)} \rangle \rangle} = \sqrt{\langle v_n^2 + \delta_2 \rangle} \]

e.g. for two-body decays: \[\delta_2 \propto 1/M \]
Non-flow

but are suppressed in higher order cumulants:

\[
v_2\{4\} = \sqrt[4]{2} \left(\langle e^{i2(\varphi_1-\varphi_2)} \rangle^2 - \langle e^{i2(\varphi_1+\varphi_2-\varphi_3-\varphi_4)} \rangle \right)
\]

\[
= \sqrt[4]{2} \left(\langle v_2^2 + \delta_2 \rangle^2 - \langle v_2^4 + 4v_2^2\delta_2 + 2\delta_2^2 \rangle \right)
\]

\[
= \sqrt[4]{\langle v_2^4 - \delta_4 \rangle}
\]

\[
\delta_4 \propto 1/M^3
\]

and/or by imposing a large gap in rapidity ($\Delta\eta > 1$):

the advantage of using forward detectors!
Non-flow

but are suppressed in higher order cumulants:

\[
\begin{align*}
v_2\{4\} &= 4\sqrt{2} \left\langle \langle e^{i2(\varphi_1-\varphi_2)} \rangle \right\rangle^2 - \left\langle \langle e^{i2(\varphi_1+\varphi_2-\varphi_3-\varphi_4)} \rangle \right\rangle \\
&= 4\sqrt{2} \left\langle v_2^2 + \delta_2 \right\rangle^2 - \left\langle v_2^4 + \delta_4 + 4v_2^2\delta_2 + 2\delta_2^2 \right\rangle \\
&= 4\sqrt{\left\langle v_2^4 - \delta_4 \right\rangle}
\end{align*}
\]

\[\delta_4 \propto 1/M^3\]

and/or by imposing a large gap in rapidity (\(\Delta\eta>1\)):

the advantage of using forward detectors!
Flow tutti-frutti

Many different observables measurable (and measured) around flow:

- Centrality dependence
- p_T and η dependence
- Identified particles, resonances
- Flow fluctuations (also event-by-event)
- Event planes: p_T and η dependence
- Correlations between harmonics
- Event-Shape-Engineering
Flow fluctuations

Possible to reconstruct the complete v_n pdf:

\begin{align*}
P(\varepsilon) &= 2\alpha\varepsilon(1 - \varepsilon^2)^{\alpha - 1} \\
\end{align*}

L. Yan, J. Y. Ollitrault PRL 112, 082301 (2014)
Correlations between harmonics

Correlations between flow harmonics (a.k.a. symmetric cumulants):

\[SC(m, n) = \frac{\langle \langle e^{i(m\phi_1 + n\phi_2 - m\phi_3 - n\phi_4)} \rangle \rangle - \langle \langle e^{im(\phi_1 - \phi_2)} \rangle \rangle \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle}{\langle \langle e^{im(\phi_1 - \phi_2)} \rangle \rangle \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle} \]

\[\approx \frac{\langle v^2_m v^2_n \rangle - \langle v^2_m \rangle \langle v^2_n \rangle}{\langle v^2_m \rangle \langle v^2_n \rangle} \cos^2(c_n \Psi_n - c_m \Psi_m) \]
Correlations between harmonics

Correlations between flow harmonics (a.k.a. symmetric cumulants):

\[
SC(m, n) = \frac{\bra\bra e^{i(m\phi_1+n\phi_2-m\phi_3-n\phi_4)}\ket\ket - \bra\bra e^{im(\phi_1-\phi_2)}\ket\ket \bra\bra e^{in(\phi_1-\phi_2)}\ket\ket}{\bra\bra e^{im(\phi_1-\phi_2)}\ket\ket \bra\bra e^{in(\phi_1-\phi_2)}\ket\ket}
\approx \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle} \cos^2 (c_n \Psi_n - c_m \Psi_m)
\]
Correlations between harmonics

Correlations between flow harmonics (a.k.a. symmetric cumulants):

\[
SC(m, n) = \frac{\langle \langle e^{i(m\phi_1+n\phi_2-m\phi_3-n\phi_4)} \rangle \rangle - \langle \langle e^{im(\phi_1-\phi_2)} \rangle \langle \langle e^{in(\phi_1-\phi_2)} \rangle \rangle}{\langle \langle e^{im(\phi_1-\phi_2)} \rangle \langle \langle e^{in(\phi_1-\phi_2)} \rangle \rangle}
\]

\[
\approx \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle} \cos^2(c_n \Psi_n - c_m \Psi_m)
\]

correlation between flow fluctuations
Correlations between harmonics

Correlations between flow harmonics (a.k.a. symmetric cumulants):

\[
SC(m, n) = \frac{\langle e^{i(m\phi_1 + n\phi_2 - m\phi_3 - n\phi_4)} \rangle - \langle e^{im(\phi_1 - \phi_2)} \rangle \langle e^{in(\phi_1 - \phi_2)} \rangle}{\langle e^{im(\phi_1 - \phi_2)} \rangle \langle e^{in(\phi_1 - \phi_2)} \rangle}
\]

\[\approx \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle} \cos^2(c_n \Psi_n - c_m \Psi_m) \]
Correlations between flow harmonics (a.k.a. symmetric cumulants):

\[v_2 \text{ and } v_4: \text{ correlated} \]

\[v_2 \text{ and } v_3: \text{ anticorrelated} \]

ALICE, PRL 117, 182301 (2016)
Correlations between harmonics (a.k.a. symmetric cumulants): Show great potential to decouple different model parameters!
Outline

› Intro: what is flow
› Why should you care?
› How do we measure it?
› What have we learned so far?
› Where do we go from here?
The paradigm

The sizeable values of flow coefficients, up to high harmonics, have been successfully explained by:

fluctuating initial conditions + hydro-like collective expansion

The sizeable values of flow coefficients, up to high harmonics, have been successfully explained by:

fluctuating initial conditions + hydro-like collective expansion

Implications:

- yes, we create a strongly coupled system
- it quickly expands before hadronizing
- doing so, it behaves like a fluid with very low viscosity
 - initial spatial anisotropies translate into momentum ones
the Paradigm

The sizeable values of flow coefficients, up to high harmonics, have been successfully explained by:

fluctuating initial conditions + hydro-like collective expansion

Implications:

‣ yes, we create a strongly coupled system
‣ it quickly expands before hadronizing
‣ doing so, it behaves like a fluid with very low viscosity
‣ initial spatial anisotropies translate into momentum ones

which initial conditions? which collectivity?
which Initial Conditions?

from J. Noronha-Hostler at Hot Quarks 2016
which Initial Conditions?

The observed v_n always come from an interplay of initial and final state effects: *not straightforward to decouple them!"
which Initial Conditions?

The observed v_n always come from an interplay of initial and final state effects: not straightforward to decouple them!

e.g. $< v_n >$: lumpy IC + high viscosity \approx smooth IC + low viscosity

X. Zhu et al., arXiv:1608.05305

B. Schenke et al., PRL 108 (2012)
which Initial Conditions?

... but looking at the full flow pdf does favour one: IP-Glasma

C. Gale et al., arXiv:1210.5144
What about the longitudinal structure? (default: boost invariance)

- Required to describe forward-backward asymmetric phenomena (directed flow, twist/torque/event plane decorrelations…)
- More important at lower energies!

3D-Glauber

3D-Glasma

the twist

which Collectivity?

Do the final momentum correlations come only from the hydro-like evolution of the system? Where does the “collectivity” come from?

- Initial state momentum correlations? (CGC)
- Hadronic rescattering
which Collectivity?

Do the final momentum correlations come only from the hydro-like evolution of the system? Where does the “collectivity” come from?

- Initial state momentum correlations? (CGC)

flow + mass ordering

CGC + Lund

B. Schenke et al, PRL 117, 162301 (2016)
which Collectivity?

Do the final momentum correlations come only from the hydro-like evolution of the system? Where does the “collectivity” come from?

- Initial state momentum correlations? (CGC)

Schlichting, Tribedy arXiv:1611.00329
which Collectivity?

Do the final momentum correlations come only from the hydro-like evolution of the system? Where does the “collectivity” come from?

- Initial state momentum correlations? (CGC)
- Hadronic rescattering

![Graph showing hydro and hydro + hadronic cascade comparison](attachment:image.png)

ALICE, JHEP 06 (2015)
Outline

- Intro: what is flow
- Why should you care?
- How do we measure it?
- What have we learned so far?
- Where do we go from here?
a Convoluted Problem

- Flow is a key observable for characterising the collective properties and the evolution of the medium
- However, it develops during different phases (initial state, QGP, hadronic phase): *highly convoluted problem!*
- The problem: how to decouple these?
 - New observables (e.g. symmetric cumulants)
 - New approaches from theory
Flow is a key observable for characterising the collective proprieties and the evolution of the medium.

However, it develops during different phases (initial state, QGP, hadronic phase): highly convoluted problem!

The problem: how to decouple these?

- New observables (e.g. symmetric cumulants)
- New approaches from theory
Flow is a key observable for characterising the collective properties and the evolution of the medium. However, it develops during different phases (initial state, QGP, hadronic phase): *highly convoluted problem!*

The problem: how to decouple these?
- New observables (e.g. symmetric cumulants)
- New approaches from theory
New Observables

Correlations between flow harmonics (a.k.a. symmetric cumulants):

ALICE, PRL 117, 182301 (2016)
New Observables

Correlations between flow harmonics (a.k.a. symmetric cumulants):

SC(3,2): set by initial conditions

ALICE, PRL 117, 182301 (2016)
New Observables

Correlations between flow harmonics \((a.k.a.\ symmetric\ cumulants)\):

\[SC(4,2):\ \text{set by hydro phase} \]

\[\text{ALICE, PRL 117, 182301 (2016)} \]
New Approaches

Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium

Using Bayesian methods to perform multi-parameter model-to-data comparison:

\[P(x_* | X, Y, y_{\text{exp}}) \propto P(X, Y, y_{\text{exp}} | x_*) P(x_*) \]

model parameter \quad model \quad measured obs. \quad computed obs.
Using Bayesian methods to perform multi-parameter model-to-data comparison:

\[
P(x_* | X, Y, y_{\text{exp}}) \propto P(X, Y, y_{\text{exp}} | x_*) P(x_*)
\]

Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium

New Approaches

Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium

Using Bayesian methods to perform multi-parameter model-to-data comparison:

\[P(x_* | X, Y, y_{exp}) \propto P(X, Y, y_{exp} | x_*) P(x_*) \]

- posterior
- likelihood
- prior
- model parameter
- model
- computed obs.
- measured obs.
New Approaches

simultaneous parameter optimisation of initial state and hydro phase:

<table>
<thead>
<tr>
<th>Initial condition</th>
<th>QGP medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm 120. / 129.</td>
<td>η/s min 0.08</td>
</tr>
<tr>
<td>p 0.0</td>
<td>η/s slope 0.85 / 0.75 GeV⁻¹</td>
</tr>
<tr>
<td>k 1.5 / 1.6</td>
<td>ζ/s norm 1.25 / 1.10</td>
</tr>
<tr>
<td>w 0.43 / 0.49 fm</td>
<td>T_{\text{switch}} 0.148 GeV</td>
</tr>
</tbody>
</table>
one Final Plea

We need more and more synergy between experimentalists and theoreticians: *fast, efficient, frequent exchange of ideas.*

If we want things to move forward, don’t be afraid and go open source:

- Github
- Rivet
I WANT YOU TO GO OPEN SOURCE
NEAREST SOFTWARE REPOSITORY
THANKS FOR THE ATTENTION!
Pre-Equilibrium Dynamics

Qualitatively complete picture of equilibration mechanism at weak coupling

Colliding nuclei → Glasma flux tubes → Over-occupied plasma → Min-jets + soft bath → Equilibrium

Strong fields at 1-2 fm/c

Eff. kinetic theory

Hydro

Classical-statistical lattice gauge theory

Quasi particles

from Soeren Schlichting at “Exploring the QCD Phase Diagram through Energy Scans” 2016
Twist and Shake

\[r_n(\eta_a, \eta_b) = \frac{\langle \cos[n(\phi(-\eta_a) - \phi(\eta_b))] \rangle}{\langle \cos[n(\phi(\eta_a) - \phi(\eta_b))] \rangle} \]

CMS PbPb \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)