Tracing the QCD pressure

André Peshier

w/ G Jackson

University of Cape Town

•

Goethe University Frankfurt

•

161201 –
Tracing the QCD pressure

André Peshier w/ G Jackson

University of Cape Town

– Goethe University Frankfurt • 161201 –
Why this talk may be relevant – or not ;)

- idea relevant for many lattice-QCD calculations at $T>0$
- understand QCD where we think it is simple
- revisit first non-perturbative coefficient
Why this talk may be relevant – or not ;)

- idea relevant for many lattice-QCD calculations at $T>0$
- understand QCD where we think it is simple
- revisit first non-perturbative coefficient

- here: only quenched limit of QCD (no quarks)
- hard work done by others, we only interpret their results
- only 1% effect ... for quenched QCD
Why this talk may be relevant – or not ;)

- here: only quenched limit of QCD (no quarks)
- hard work done by others, we only interpret their results
- only 1% effect … for quenched QCD

- idea relevant for many lattice-QCD calculations at $T>0$
- understand QCD where we think it is simple
- revisit first non-perturbative coefficient

![Graph showing pressure (p/p_0) versus temperature (T/T_c)]
Methods

\[\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \ldots \text{ where } F^a_{\mu\nu} = \partial^\mu A^\nu_a - \partial^\nu A^\mu_a - g f_{abc} A^\mu_b A^\nu_c \]
Methods

\[\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu \nu}^a F_{a}^{\mu \nu} + \ldots \text{ where } F_{a}^{\mu \nu} = \partial_{\mu} A^{\nu}_a - \partial_{\nu} A^{\mu}_a - g f_{a b c} A^{\mu}_b A^{\nu}_c \]

Perturbation theory

\[p = p_{\text{SB}} \left[1 + c_2 \sqrt{\alpha^2} + \ldots \right] \]
Methods

\[\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu \nu}^a F_{a}^{\mu \nu} + \ldots \text{ where } F_{a}^{\mu \nu} = \partial_{\mu} A_{a}^{\nu} - \partial_{\nu} A_{a}^{\mu} - g f_{abc} A_{b}^{\mu} A_{c}^{\nu} \]

\[p = p_{\text{SB}} \left[1 + c_2 \sqrt{\alpha^2} + \ldots \right] \]
Perturbation theory **CHALLENGES**

\[
\frac{p}{p_{SB}} = 1 + c_2 \alpha^{2/2} + c_3 \alpha^{3/2} + (c_4 + \tilde{c}_4 \ln \alpha) \alpha^{4/2} + c_5 \alpha^{5/2} + (c_6 + \tilde{c}_6 \ln \alpha) \alpha^{6/2} + \ldots
\]

[Shuryak 1978]

[Kajantie et al 2003]
Perturbation theory **CHALLENGES**

\[
\frac{p}{p_{SB}} = 1 + c_2 \alpha^{2/2} + c_3 \alpha^{3/2} + (c_4 + \tilde{c}_4 \ln \alpha) \alpha^{4/2} + c_5 \alpha^{5/2} + (c_6 + \tilde{c}_6 \ln \alpha) \alpha^{6/2} + \ldots
\]

[Shuryak 1978]

[Kajantie et al 2003]
Perturbation theory \textbf{CHALLENGES}

\[
\frac{p}{\rho_{SB}} = 1 + c_2 \alpha^{2/2} + c_3 \alpha^{3/2} + (c_4 + \tilde{c}_4 \ln \alpha) \alpha^{4/2} + c_5 \alpha^{5/2} + (c_6 + \tilde{c}_6 \ln \alpha) \alpha^{6/2} + \ldots
\]

[Shuryak 1978]
[\textit{\ldots}]
[\textit{\ldots}]

[Shuryak 1978]
[Kajantie et al 2003]
Perturbation theory “diverges”

toy model: scalar “QFT” in \(d=0\) dimensions

- “Lagrangian” \(L = \frac{1}{2} x^2 + \lambda x^4\) \(\rightarrow\) “partition fnc” \(Z(\lambda) = \int dx \exp(-L(\lambda))\)

- perturbative expansion \(Z(\lambda)/Z_0 = 1 - 3\lambda + \frac{1}{2} 105\lambda^2 + \ldots\)
Perturbation theory “diverges”

toy model: scalar “QFT” in $d=0$ dimensions

- “Lagrangian” $L = \frac{1}{2} x^2 + \lambda x^4$ → “partition fnc” $Z(\lambda) = \int dx \exp(-L(\lambda))$
- perturbative expansion $Z(\lambda)/Z_0 = 1 - 3\lambda + \frac{1}{2} 105\lambda^2 + \ldots$

lower order better for larger coupling
Perturbation theory “diverges”

toy model: scalar “QFT” in $d=0$ dimensions

- “Lagrangian” $L = \frac{1}{2} x^2 + \lambda x^4$ → “partition func” $Z(\lambda) = \int dx \exp(-L(\lambda))$
- perturbative expansion $Z(\lambda)/Z_0 = 1 - 3\lambda + \frac{1}{2} 105\lambda^2 \mp \ldots$

![Graph showing perturbation theory divergence](image)

cut λ plane: convergence radius = 0

lower order better for larger coupling
Lattice QCD CHALLENGES

\[\frac{I(T)}{T^4} \]

- \(N_t = 5 \)
- \(N_t = 6 \)
- \(N_t = 7 \)
- \(N_t = 8 \)
- cont. limit
- Boyd et al.

[Borsanyi et al, 2012]
finite-size artefacts in particular around T_c: correlations

[Borsanyi et al, 2012]
Lattice QCD

integral method: pressure from interaction measure

\[\frac{p(T)}{T^4} = \sigma + \int_{T_0}^T \frac{dT'}{T'} \frac{\mathcal{I}(T')}{T'^4} \]

where \(\sigma = \frac{p(T_0)}{T_0^4} \)

\[\mathcal{I} = e - 3p \]

where \(e = sT - p \)

with \(s = \partial p / \partial T \)
Lattice QCD

integral method: pressure from interaction measure

\[
\frac{p(T)}{T^4} = \sigma + \int_{T_0}^{T} \frac{dT'}{T'} \frac{\mathcal{I}(T')}{T'^4} \quad \text{where} \quad \sigma = \frac{p(T_0)}{T_0^4}
\]

\[\mathcal{I} = e - 3p\]

where \(e = sT - p\)

with \(s = \partial p / \partial T\)

The region around \(T_c\) is highlighted with a yellow shade, indicating it "contributes most" to the integral. The graph shows the ratio \(\mathcal{I}/T^4\) and \(\mathcal{I}T_c/T^5\) as functions of \(T/T_c\).
Scrutinize existing results [Borsanyi et al, 2012]

\[
\frac{T}{T_c}^4
\]

\[
\begin{array}{c}
10^{-1} \\
10^{-2} \\
1 \\
10 \\
10^2 \\
10^3
\end{array}
\]

compare to pQCD $\Lambda = 0.73 T_c$ known

\rightarrow fit: $c_6 = -72 \pm 3$
Scrutinize existing results [Borsanyi et al, 2012]

\[\frac{T}{T_c} \]

\[\frac{T}{T_c} \]

\[\frac{\rho(T)}{\rho_{SB}} \]

\[\frac{\rho(T)}{\rho_{SB}} \]

compare to pQCD \(\Lambda = 0.73 T_c \) known

\[c_6 = -72 \pm 3 \]
Scrutinize existing results [Borsanyi et al, 2012]

- pQCD should be “better” at large T...

- compare to pQCD $\Lambda = 0.73 T_c$ known

 \rightarrow fit: $c_6 = -72 \pm 3$
Scrutinize existing results [Borsanyi et al, 2012]

\[T/T_c \]

\[1 - p/p_0 \]

\[\Lambda = 0.73 T_c \] known

\[c_6 = -72 \pm 3 \]
Scrutinize existing results [Borsanyi et al, 2012]

\[\frac{T}{T_c} \]

\[\frac{1 - p/p_0}{p/T_{c}} \]

\[c_6 = -72 \pm 3 \]

pQCD should be “better” at large \(T \) ...
Theory & models

In practice, we always use models/approximations. Validity check is crucial in QFT.

Adjusting parameters = renormalization.

Theory

\[\text{phenomena, observables}\]

\[\text{ADJUST params}\]

\[\text{VERIFY}\]

\[\text{PREDICT}\]
• in practice, we **always use models/approximations**
 • **validity check** is crucial
in practice, we always use models/approximations
 • validity check is crucial

in QFT
 • adjusting parameters = renormalization
Our approach

- **thermodynamic renormalization**: match perturbative results to lattice data at sufficiently large “renormalization temperature” to specify model parameter(s)

 - use interaction measure (being the actual lattice “observable”)

\[
\mathcal{I}_{\text{model}} = T^5 \frac{\partial \left(\frac{p_{\text{model}}}{T^4} \right)}{\partial T}
\]
Our approach

- **thermodynamic renormalization**: match perturbative results to lattice data at sufficiently large “renormalization temperature” to specify model parameter(s)

use interaction measure (being the actual lattice “observable”)

\[I_{\text{model}} = T^5 \frac{\partial \left(\frac{p_{\text{model}}}{T^4} \right)}{\partial T} \]

- **check range of applicability** of adjusted model by **comparison with lattice data** (not by vague arguments “coupling small”)
Our approach

- **thermodynamic renormalization**: match perturbative results to lattice data at sufficiently large “renormalization temperature” to specify model parameter(s)

 use interaction measure (being the actual lattice “observable”)

\[I_{\text{model}} = T^5 \frac{\partial (p_{\text{model}}/T^4)}{\partial T} \]

- **check range of applicability** of adjusted model by comparison with lattice data (not by vague arguments “coupling small”)

- make **predictions for other observables** in applicability range
(n|l) models \((n_f=0)\)

Pressure (= thermodynamic potential) to order \(n\):

\[p_{(n)} = p_0 \left[1 + \sum_{m=2}^{n} C_m \alpha^{m/2} \right] \quad \text{where} \quad p_0 = 8 \times 2^{\frac{\pi^2}{90}} T^4\]

\[C_2 = -1.2 \]
\[C_3 = +5.4 \]
\[C_4 = 6.8 \ln \alpha + 16.2 \]
\[C_5 = -45.7 \]
\[C_6 = -36.6 \ln \alpha + c_6 \quad \text{(for} \ \mu = 2\pi T)\]

Running coupling to order \(l\):

\[\alpha(\ell) = \sum_{k=1}^{\ell} a_k(L) L^{-k} \]

\[a_1 = 1.14, \quad a_2 = -0.96 \ln L, \quad a_3 = 0.41 + 0.81 (\ln L - 1) \ln L \]

\[L(T) = \ln \left(\frac{2\pi T}{\lambda T_c} \right)^2 \quad \text{where} \quad \lambda = \Lambda / T_c\]
Running coupling

fairly similar for $l=2$ and $l=3$ (and $l=1$ after rescaling)
(5|2)-model \ldots \textbf{how NOT to: } \rho\text{-scheme}
(5|2)-model … how NOT to: p-scheme
(5|2)-model … how **NOT** to: \(p \)-scheme

small applicability range, not to \(T \to \infty \)
\((5|2)\)-model \ldots how NOT to: \(p\)-scheme

\[\frac{I}{T^4} \]

\[1 - \frac{p}{p_0} \]

systematic discrepancy for interaction measure as actual lattice “observable”

small applicability range, not to \(T \to \infty \)
(5|2)-model

\[p_{(5|2)}(T; \lambda) = p_{\text{lattice}}(T) \]
(5|2)-model

\[\mathcal{I}_{(5|2)}(T; \lambda) = \mathcal{I}_{\text{lattice}}(T) \]

\[p_{(5|2)}(T; \lambda) = p_{\text{lattice}}(T) \]

\[\lambda(T) \]

\[T/T_c \]

matching \(p_{(5|2)} \)

Andre.Peshier@uct.ac.za • Tracing the QCD pressure • Frankfurt University, Dec 2016
(5|2)-model

\[\mathcal{I}_{(5|2)}(T; \lambda) = \mathcal{I}_{\text{lattice}}(T) \]

\[p_{(5|2)}(T; \lambda) = p_{\text{lattice}}(T) \]
\(\lambda^{*}_{(5|2)} = 0.58 \pm 0.11 \)

\[\mathcal{I}_{(5|2)}(T; \lambda) = \mathcal{I}_{\text{lattice}}(T) \]

\[p_{(5|2)}(T; \lambda) = p_{\text{lattice}}(T) \]
(5|2)-model

applicability range: $T > 40 T_c$
(5|2)-model

The applicability range is $T > 40T_c$.

- lattice
- $T_{(5,2)}$
- $T_{(5,2)} \oplus T(10T_c)$
(5|2)-model

applicability range: $T > 40T_c$
(5|2)-model

applicability range: $T > 40T_c$
(5|2)-model

applicability range: $T > 40T_c$

in applicability range: discrepancy = constant shift
(5|2)-model

applicability range: \(T > 40T_c \)

in applicability range:
discrepancy = constant shift

\[
\frac{p(T)}{T^4} = \sigma + \int_{T_0}^{T'} \frac{dT'}{T'} \frac{I(T')}{T'^4}
\]
(5|2) model

breakdown at $T^* \sim 40T_c$ because “coupling too large” …?
breakdown at $T^* \sim 40T_c$ because “coupling too large” …?

\begin{align*}
\alpha(10T_c) &= 0.10 \\
\alpha(40T_c) &= 0.08 \\
\alpha(400T_c) &= 0.06
\end{align*}
(5|2) model

breakdown at $T^* \sim 40T_c$ because "coupling too large" …?

$$p_{(5|2)}^*(40T_c) = p_0[1 - 0.09 + 0.12 - 0.01 - 0.08] \approx p_0[1 - \frac{1}{2}0.09]$$

$$\alpha(10T_c) = 0.10$$
$$\alpha(40T_c) = 0.08$$
$$\alpha(400T_c) = 0.06$$

similar properties as asymptotic series
(6|3) model

more difficult

• 2 parameters

\[\lambda_{(6|3)}, \ c_6 \]

• expect smaller applicability range
(6|3) model

more difficult
- 2 parameters
 \(\lambda_{(6|3)}, c_6 \)
- expect smaller applicability range

fit over interval \([T_f, T_{\text{max}}]\)
(6|3) model

- More difficult
 - 2 parameters: $\lambda_{(6|3)}, c_6$
 - Expect smaller applicability range

Fit over interval $[T_f, T_{\text{max}}]$
Results

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\caption{Graph showing the pressure ratio \(p/p_0 \) as a function of the temperature ratio \(T/T_c \). The graph includes lines for \(p_{(6,3)}^* \) and \(p_{(5,2)}^* \), as well as data points for lQCD OLD and lQCD revised.}
\end{figure}
Results

Matching interaction measure at large T

"re-calibration" of pressure at $T > 4T_c$

Slower approach to free limit
Results

matching interaction measure at large T

\[\downarrow \]

\textbf{“re-calibration”} of pressure at $T > 4T_c$

slower approach to free limit

non-perturbative coefficient

\[c_6 = \mathcal{O}(-40) \]

\[c_6 = -72 \pm 3 \]

\[c_6 = -95 \pm 6 \]
Results

matching interaction measure at large T

\[\downarrow \]

"re-calibration" of pressure at $T > 4T_c$

slower approach to free limit

non-perturbative coefficient

\[c_6 = O(-40) \]

\[c_6 = -72 \pm 3 \]

\[c_6 = -95 \pm 6 \]
Resumé

The graph illustrates the behavior of T/T_c and p/p_0 as a function of T/T_c. The initial downward trend in T/T_c towards 1 is followed by a match with the revised data, indicating a corrected trend.

The inset graph shows p/p_0 as a function of T/T_c. The data points are labeled as "lattice QCD" and "revised". A note indicates a difference of about 1%.
Resumé [arXiv:1610.08530]

- new approach to deal with lattice artefacts (which have physics reasons):
 combine integral method with perturbative QCD

- 1% modification of pressure, slower approach to asymptotic freedom
 ~ relevant to benchmark improved analytical methods

- improved value of 1st nonperturbative coefficient

- outlook: phenomenological implications for physical case
Resumé [arXiv:1610.08530]

• new approach to deal with lattice artefacts (which have physics reasons): combine integral method with perturbative QCD

• 1% modification of pressure, slower approach to asymptotic freedom ~ relevant to benchmark improved analytical methods
• new approach to deal with lattice artefacts (which have physics reasons): combine integral method with perturbative QCD

• 1% modification of pressure, slower approach to asymptotic freedom ~ relevant to benchmark improved analytical methods
Resumé [arXiv:1610.08530]

• new approach to deal with lattice artefacts (which have physics reasons): **combine integral method with perturbative QCD**

• 1% modification of pressure, **slower approach to asymptotic freedom**
 ~ relevant to benchmark improved analytical methods
Resumé [arXiv:1610.08530]

- new approach to deal with lattice artefacts (which have physics reasons): combine integral method with perturbative QCD

- 1% modification of pressure, slower approach to asymptotic freedom ~ relevant to benchmark improved analytical methods
Resumé [arXiv:1610.08530]

- new approach to deal with lattice artefacts (which have physics reasons):
 combine integral method with perturbative QCD

- 1% modification of pressure, **slower approach to asymptotic freedom**
 ~ relevant to benchmark improved analytical methods
Resumé [arXiv:1610.08530]

- new approach to deal with lattice artefacts (which have physics reasons): combine integral method with perturbative QCD

- 1% modification of pressure, slower approach to asymptotic freedom
 ~ relevant to benchmark improved analytical methods

- improved value of 1st nonperturbative coefficient
Resumé [arXiv:1610.08530]

- New approach to deal with lattice artefacts (which have physics reasons): combine integral method with perturbative QCD

- 1% modification of pressure, slower approach to asymptotic freedom ~ relevant to benchmark improved analytical methods

- Improved value of 1st nonperturbative coefficient

- Outlook: phenomenological implications for physical case