Institut für Theoretische Physik Goethe-Universität, Frankfurt

Thermodynamics of quantum fields subject to a geometric confinement: When Casimir meets Linde

Dr. Sylvain Mogliacci

Main references:

SM, WA Horowitz, I Kolbé / arXiv:1701.XXXXX (PRD?)

SM, JO Andersen, M Strickland, N Su, A Vuorinen / arXiv:1307.8098 (JHEP)

2 Bulk thermodynamics of the QGP

- Experimental quests and theoretical challenges
- Correlations and fluctuations of conserved charges

3 Finite- μ QCD EoS via resummed PT

- Low order cumulants
- Pressure at finite baryon chemical potential

Geometric confinement and finite volume

- Introduction for a single free scalar field
- Results for the thermodynamics of the free scalar field

5 CONCLUSION

Introduction

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 の�?

イロン イヨン イヨン イヨン

3

When Casimir meets Linde! ... What are you talking about?

・ロン ・四と ・ヨン ・ヨン

æ

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

• Structure (T, μ) of phase diagram; location of Critical End Point (CEP)

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

• Poor convergence \Rightarrow bare PT useless at moderate energies T and μ

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies T and μ
- No sign problem; connects with lattice results toward lower energies

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies ${\cal T}$ and ${m \mu}$
- No sign problem; connects with lattice results toward lower energies
- Qualitative understanding of plasma properties at moderate energies

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies ${\cal T}$ and ${m \mu}$
- No sign problem; connects with lattice results toward lower energies
- Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?

ヘロト ヘポト ヘヨト ヘヨト

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies ${\cal T}$ and ${m \mu}$
- No sign problem; connects with lattice results toward lower energies
- Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?

• Why not?

ヘロト ヘポト ヘヨト ヘヨト

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies ${\cal T}$ and ${m \mu}$
- No sign problem; connects with lattice results toward lower energies
- Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?

• Why not? Could get nice insights, possible new screening effects...

ヘロト ヘポト ヘヨト ヘヨト

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies ${\cal T}$ and ${m \mu}$
- No sign problem; connects with lattice results toward lower energies
- Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?

- Why not? Could get nice insights, possible new screening effects...
- More realistic description, properly accounting for the finite size!

When Casimir meets Linde! ... What are you talking about? Why thermodynamics of the Quark-Gluon Plasma (QGP)?

- Structure (T, μ) of phase diagram; location of Critical End Point (CEP)
- Hydrodynamic description of the plasma in expansion

Why Resummed Perturbation Theory (RPT)?

- Poor convergence \Rightarrow bare PT useless at moderate energies ${\cal T}$ and ${m \mu}$
- No sign problem; connects with lattice results toward lower energies
- Qualitative understanding of plasma properties at moderate energies

Why then would we need new ideas (geometric confinement)?

- Why not? Could get nice insights, possible new screening effects...
- More realistic description, properly accounting for the finite size!
- ...Input for a more quantitative description of jet quenching

Bulk thermodynamics of the QGP

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

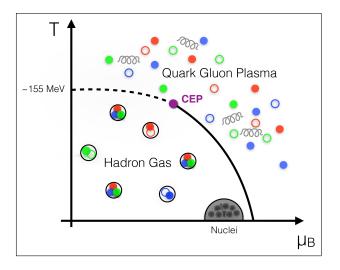
イロン イヨン イヨン イヨン

æ

PHASE DIAGRAM AND CRITICAL END POINT

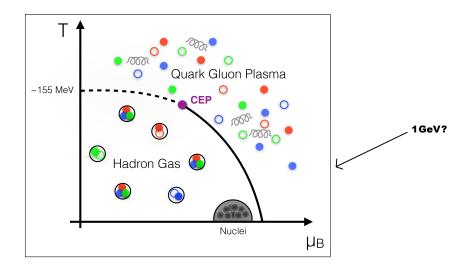
・ロン ・四と ・ヨン ・ヨン

PHASE DIAGRAM AND CRITICAL END POINT



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

PHASE DIAGRAM AND CRITICAL END POINT



PHASE DIAGRAM AND CRITICAL END POINT

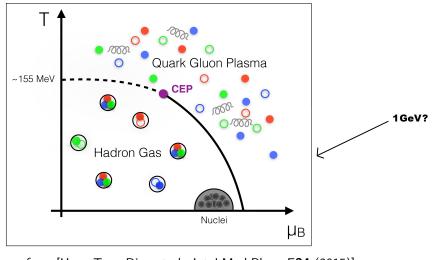


Figure from [Heng-Tong Ding et al., Int.J.Mod.Phys. E24 (2015)]

★ 문 → < 문 →</p>

・ロト ・四ト ・ヨト ・ヨト

æ

THERMAL QCD ON A LATTICE

イロト イポト イヨト イヨト

THERMAL QCD ON A LATTICE

Lattice discretization of the theory \Rightarrow Hypercubic lattice $N_s^3 \times N_\tau$ with spacing $a \neq 0$

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 4 / 37

イロト イポト イヨト イヨト

THERMAL QCD ON A LATTICE

Lattice discretization of the theory \Rightarrow Hypercubic lattice $N_s^3 \times N_\tau$ with spacing $a \neq 0$

Monte Carlo simulations possible

 \Rightarrow Probing the bulk thermodynamics in a full non perturbative way!

THERMAL QCD ON A LATTICE

- Lattice discretization of the theory \Rightarrow Hypercubic lattice $N_s^3 \times N_\tau$ with spacing $a \neq 0$
- Monte Carlo simulations possible
- \Rightarrow Probing the bulk thermodynamics in a full non perturbative way!

 $\begin{array}{l} \mbox{Bielefeld's GPU (Germany)} \\ \mbox{500 Teraflops} \sim 10\ 000\ \mbox{PCs} \\ \mbox{(And} \approx \mbox{EUR}\ 1.1 \times 10^6) \end{array}$

・ロン ・四と ・ヨン ・ヨン

臣

THERMAL QCD ON A LATTICE

However

DR. SYLVAIN MOGLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 5 / 37

イロト イポト イヨト イヨト

THERMAL QCD ON A LATTICE

Dirac operator, at nonzero $\mu_{\rm B}$, is not hermitian: The fermion determinant is complex

THERMAL QCD ON A LATTICE

Dirac operator, at nonzero $\mu_{\rm B}$, is not hermitian: The fermion determinant is complex

 \Rightarrow Problem with average phase factor, highly oscillatory integrals

THERMAL QCD ON A LATTICE

Dirac operator, at nonzero $\mu_{\rm B}$, is not hermitian: The fermion determinant is complex

- \Rightarrow Problem with average phase factor, highly oscillatory integrals
- \Rightarrow Simulations (still) not (yet) feasible!

・ロト ・四ト ・ヨト ・ヨト

æ

ANALYTIC (PERTURBATIVE) APPROACH

Dr. Sylvain Mocliacci (UCT) Thermodynamics & ceometric confinement January 12, 2017 6 / 37

イロト イポト イヨト イヨト

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

イロト イポト イヨト イヨト

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

$$\begin{aligned} \mathcal{Z}(T, \{\mu_f\}; V) &\equiv \operatorname{Tr}_{\mathcal{P}} \exp\left[-\beta \int \mathrm{d}^{d} \boldsymbol{x} \left(\hat{\mathcal{H}} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f}\right)\right] \\ &= \int_{\phi} \mathcal{D}\phi(\boldsymbol{x}) \exp\left[-\int_{\mathcal{C}_{\beta}} \mathrm{d}\tau \int \mathrm{d}^{d} \boldsymbol{x} \left(\mathcal{L}_{\mathrm{eff}}(\phi, i\partial \phi/\partial \tau)\right)\right] \end{aligned}$$

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 6 / 37

(D) (A) (A) (A)

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

$$\begin{aligned} \mathcal{Z}(T, \{\mu_f\}; V) &\equiv \operatorname{Tr}_{\mathcal{P}} \exp\left[-\beta \int \mathrm{d}^{d} \boldsymbol{x} \left(\hat{\mathcal{H}} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f}\right)\right] \\ &= \int_{\phi} \mathcal{D}\phi(\boldsymbol{x}) \exp\left[-\int_{\mathcal{C}_{\beta}} \mathrm{d}\tau \int \mathrm{d}^{d} \boldsymbol{x} \left(\mathcal{L}_{\mathsf{eff}}(\phi, i\partial \phi/\partial \tau)\right)\right] \end{aligned}$$

Perturbative evaluation ($\widetilde{S}_{\phi_{I}} \equiv S_{\phi_{I}}/\lambda$, interacting part of the action):

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

$$\begin{aligned} \mathcal{Z}(T, \{\mu_f\}; V) &\equiv \operatorname{Tr}_{\mathcal{P}} \exp\left[-\beta \int \mathrm{d}^{d} \boldsymbol{x} \left(\hat{\mathcal{H}} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f}\right)\right] \\ &= \int_{\phi} \mathcal{D}\phi(\boldsymbol{x}) \exp\left[-\int_{\mathcal{C}_{\beta}} \mathrm{d}\tau \int \mathrm{d}^{d} \boldsymbol{x} \left(\mathcal{L}_{\mathrm{eff}}(\phi, i\partial \phi/\partial \tau)\right)\right] \end{aligned}$$

Perturbative evaluation $(\widetilde{S}_{\phi_{\mathbf{I}}} \equiv S_{\phi_{\mathbf{I}}}/\lambda)$, interacting part of the action): $\log \mathcal{Z} = \log \mathcal{Z}_{0} - \lambda \left\{ \left\langle \widetilde{S}_{\phi_{\mathbf{I}}} \right\rangle \right\} + \frac{\lambda^{2}}{2} \left\{ \left\langle \widetilde{S}_{\phi_{\mathbf{I}}}^{2} \right\rangle - \left\langle \widetilde{S}_{\phi_{\mathbf{I}}} \right\rangle^{2} \right\} + \mathcal{O}(\lambda^{3})$

(D) (A) (A) (A)

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

$$\begin{aligned} \mathcal{Z}(T, \{\mu_f\}; V) &\equiv \operatorname{Tr}_{\mathcal{P}} \exp\left[-\beta \int \mathrm{d}^{d} \boldsymbol{x} \left(\hat{\mathcal{H}} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f}\right)\right] \\ &= \int_{\phi} \mathcal{D}\phi(\boldsymbol{x}) \exp\left[-\int_{\mathcal{C}_{\beta}} \mathrm{d}\tau \int \mathrm{d}^{d} \boldsymbol{x} \left(\mathcal{L}_{\mathrm{eff}}(\phi, i\partial \phi/\partial \tau)\right)\right] \end{aligned}$$

Perturbative evaluation ($\tilde{S}_{\phi_{I}} \equiv S_{\phi_{I}}/\lambda$, interacting part of the action):

$$\log \mathcal{Z} = \log \mathcal{Z}_{0} - \lambda \left\{ \left\langle \widetilde{S}_{\phi_{1}} \right\rangle \right\} + \frac{\lambda^{2}}{2} \left\{ \left\langle \widetilde{S}_{\phi_{1}}^{2} \right\rangle - \left\langle \widetilde{S}_{\phi_{1}} \right\rangle^{2} \right\} + \mathcal{O}\left(\lambda^{3}\right)$$

Thermodynamic quantities obtained from various derivatives of the partition function \mathcal{Z}_{QCD} . In the infinite volume/non compactified limit ' $V \to \infty$ ':

ANALYTIC (PERTURBATIVE) APPROACH

Path integral representation of the partition function (e.g. for scalar fields):

$$\begin{aligned} \mathcal{Z}(T, \{\mu_f\}; V) &\equiv \operatorname{Tr}_{\mathcal{P}} \exp\left[-\beta \int \mathrm{d}^{d} \boldsymbol{x} \left(\hat{\mathcal{H}} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f}\right)\right] \\ &= \int_{\phi} \mathcal{D}\phi(\boldsymbol{x}) \exp\left[-\int_{\mathcal{C}_{\beta}} \mathrm{d}\tau \int \mathrm{d}^{d} \boldsymbol{x} \left(\mathcal{L}_{\mathrm{eff}}(\phi, i\partial \phi/\partial \tau)\right)\right] \end{aligned}$$

Perturbative evaluation ($\widetilde{S}_{\phi_1} \equiv S_{\phi_1}/\lambda$, interacting part of the action):

$$\log \mathcal{Z} = \log \mathcal{Z}_{0} - \lambda \left\{ \left\langle \widetilde{S}_{\phi_{1}} \right\rangle \right\} + \frac{\lambda^{2}}{2} \left\{ \left\langle \widetilde{S}_{\phi_{1}}^{2} \right\rangle - \left\langle \widetilde{S}_{\phi_{1}} \right\rangle^{2} \right\} + \mathcal{O}\left(\lambda^{3}\right)$$

Thermodynamic quantities obtained from various derivatives of the partition function \mathcal{Z}_{QCD} . In the infinite volume/non compactified limit ' $V \to \infty$ ':

$$p_{QCD} \equiv \frac{T}{V} \log Z_{QCD}$$

$$S \equiv \frac{\partial p_{QCD}}{\partial T} ; \quad \mathcal{N}_f \equiv \frac{\partial p_{QCD}}{\partial \mu_f}$$
Thermodynamics & geometric convention January 12, 2017 6 / 3

イロン イヨン イヨン イヨン

æ

Correlations and fluctuations of conserved charges via such thermal averages, trivially realized via derivatives of the pressure respect to chemical potentials, as:

イロト イポト イヨト イヨト

Correlations and fluctuations of conserved charges via such thermal averages, trivially realized via derivatives of the pressure respect to chemical potentials, as:

$$\mathcal{Z}_{\text{QCD}} = \text{Tr} \exp\left[-\beta \int d^d x \left(\left. \hat{\mathcal{H}}_{\text{QCD}} \right|_{\mu_f=0} - \sum_f \mu_f \hat{\mathcal{Q}}_f \right) \right]$$

イロト イポト イヨト イヨト

Correlations and fluctuations of conserved charges via such thermal averages, trivially realized via derivatives of the pressure respect to chemical potentials, as:

$$\mathcal{Z}_{\text{QCD}} = \text{Tr} \exp \left[-\beta \int d^d \mathbf{x} \left(\left. \hat{\mathcal{H}}_{\text{QCD}} \right|_{\mu_f=0} - \sum_f \mu_f \hat{\mathcal{Q}}_f \right) \right]$$

For allowing comparisons with lattice, we deal with cumulants at vanishing μ_f :

A B K A B K

Correlations and fluctuations of conserved charges via such thermal averages, trivially realized via derivatives of the pressure respect to chemical potentials, as:

$$\mathcal{Z}_{QCD} = \operatorname{Tr} \exp\left[-\beta \int d^{d} \boldsymbol{x} \left(\left. \hat{\mathcal{H}}_{QCD} \right|_{\mu_{f}=0} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f} \right) \right]$$

For allowing comparisons with lattice, we deal with cumulants at vanishing μ_{f} :

$$\chi_{u_i d_j s_k \dots}(T) \equiv \frac{\partial^{i+j+k+\dots} p(T, \{\mu_f\})}{\partial \mu_u^i \partial \mu_d^j \partial \mu_s^k \dots} \bigg|_{\{\mu_f\}=0}$$

A B K A B K

Correlations and fluctuations of conserved charges via such thermal averages, trivially realized via derivatives of the pressure respect to chemical potentials, as:

$$\mathcal{Z}_{QCD} = \operatorname{Tr} \exp\left[-\beta \int d^{d} \boldsymbol{x} \left(\left. \hat{\mathcal{H}}_{QCD} \right|_{\mu_{f}=0} - \sum_{f} \mu_{f} \hat{\mathcal{Q}}_{f} \right) \right]$$

For allowing comparisons with lattice, we deal with cumulants at vanishing μ_{f} :

$$\chi_{u_i d_j s_k \dots} (T) \equiv \frac{\partial^{i+j+k+\dots} p(T, \{\mu_f\})}{\partial \mu_u^i \partial \mu_d^j \partial \mu_s^k \dots} \Big|_{\{\mu_f\}=0}$$

... But first, what about bare (not resummed) and conventional (infinite volume; no spatial compactification) perturbation theory...?

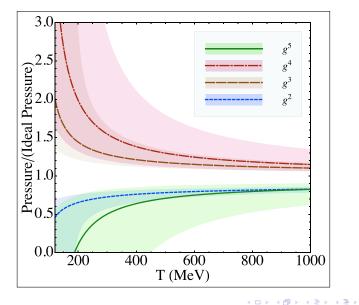
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

(massless) QCD with $N_f = 3$ and $\mu = 0$:

Э

(massless) QCD with $N_f = 3$ and $\mu = 0$:



Finite density QCD Equation of State via resummed PT

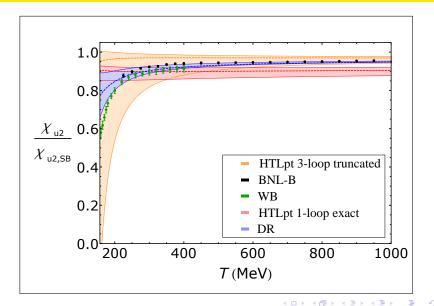
▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

LOW ORDER CUMULANTS

イロン イヨン イヨン イヨン

æ

LOW ORDER CUMULANTS



$$\chi_{\mathsf{B4}} = \left(\chi_{\mathsf{u4}} + \chi_{\mathsf{d4}} + \chi_{\mathsf{s4}} + 4\chi_{\mathsf{u3d}} + 4\chi_{\mathsf{u3s}} + 4\chi_{\mathsf{d3u}} + 4\chi_{\mathsf{d3s}} + 4\chi_{\mathsf{s3u}} + 4\chi_{\mathsf{s3d}} + 6\chi_{\mathsf{u2d2}} + 6\chi_{\mathsf{d2s2}} + 6\chi_{\mathsf{u2s2}} + 12\chi_{\mathsf{u2ds}} + 12\chi_{\mathsf{d2us}} + 12\chi_{\mathsf{s2ud}}\right)/81$$

Massless quarks $\implies \chi_{u4} = \chi_{d4} = \chi_{s4}$

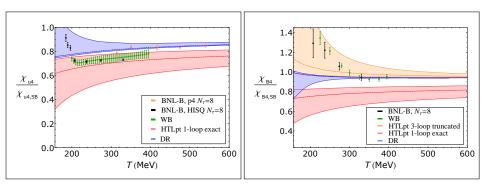
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 10 / 37

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

$$\chi_{\mathsf{B4}} = \left(\chi_{\mathsf{u4}} + \chi_{\mathsf{d4}} + \chi_{\mathsf{s4}} + 4\chi_{\mathsf{u3d}} + 4\chi_{\mathsf{u3s}} + 4\chi_{\mathsf{d3u}} + 4\chi_{\mathsf{d3s}} + 4\chi_{\mathsf{s3u}} + 4\chi_{\mathsf{s3d}} + 6\chi_{\mathsf{u2d2}} + 6\chi_{\mathsf{d2s2}} + 6\chi_{\mathsf{u2s2}} + 12\chi_{\mathsf{u2ds}} + 12\chi_{\mathsf{d2us}} + 12\chi_{\mathsf{s2ud}}\right)/81$$

Massless quarks $\implies \chi_{u4} = \chi_{d4} = \chi_{s4}$



DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 10 / 37

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

イロト イヨト イヨト イヨト

æ

Pressure at finite $\mu_{\rm B}$

イロト イポト イヨト イヨト

Pressure at finite $\mu_{\rm B}$

The finite density part of the pressure is "simply" defined as:

$$\Delta p(T) \equiv p(T, \{\mu_f\} \neq 0) - p(T, \{\mu_f\} = 0)$$

イロト イポト イヨト イヨト

Pressure at finite $\mu_{\rm B}$

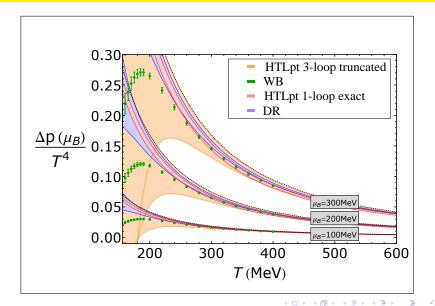
The finite density part of the pressure is "simply" defined as:

$$\Delta p(T) \equiv p(T, \{\mu_f\} \neq 0) - p(T, \{\mu_f\} = 0)$$

Which is nothing but a Taylor series containing all order cumulantss:

$$\begin{aligned} \Delta p(T) &= \sum_{i,j,k,\ldots=1}^{\infty} \frac{\partial^{i+j+k+\ldots} p(T, \{\mu_u, \mu_d, \mu_s, \ldots\})}{\partial \mu_u^i \partial \mu_d^j \partial \mu_s^k \ldots} \bigg|_{\{\mu_f\}=0} \times \frac{\mu_u^j \mu_d^j \mu_s^k \ldots}{i! \; j! \; k! \ldots} \\ &= \sum_{i,j,k,\ldots=1}^{\infty} \chi_{u_i \, d_j \, s_k \ldots} \times \frac{\mu_u^j \mu_d^j \mu_s^k \ldots}{i! \; j! \; k! \ldots} \end{aligned}$$

Pressure at finite $\mu_{\rm B}$



Geometric confinement and finite volume

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

イロト イヨト イヨト イヨト

э.

イロト イポト イヨト イヨト

GLIMPSE OF GEOMETRIC CONFINEMENT

• How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)

イロト イポト イヨト イヨト

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!

(E) < E)</p>

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,
 - Presence of new thermal & geometric (Casimir type of) effects.

(D) (A) (A) (A)

GLIMPSE OF GEOMETRIC CONFINEMENT

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,
 - Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then $(f(T, \{L_i\}) \equiv f(T, \{L_i\}) - f(T = 0, \{L_i\}))$:

(D) (A) (A) (A)

GLIMPSE OF GEOMETRIC CONFINEMENT

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,
 - Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then $(f(T, \{L_i\}) \equiv f(T, \{L_i\}) - f(T = 0, \{L_i\}))$: • $p(T, \{L_i\}) = -f(T, \{L_i\}) - \sum_{i=1}^{D-1} \left[L_i \times \frac{\partial f(T, \{L_i\})}{\partial L_i} \right]$

ヘロト 人間ト イヨト イヨト

GLIMPSE OF GEOMETRIC CONFINEMENT

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,
 - Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then $(f(T, \{L_i\}) \equiv f(T, \{L_i\}) - f(T = 0, \{L_i\}))$:

•
$$p(T, \{L_i\}) = -f(T, \{L_i\}) - \sum_{i=1}^{D-1} \left[L_i \times \frac{\partial (T, \{L_i\})}{\partial L_i} \right]$$

$$(T, \{L_i\}) = -\frac{\partial f(T, \{L_i\})}{\partial T} ;$$

イロト イポト イヨト イヨト

GLIMPSE OF GEOMETRIC CONFINEMENT

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,
 - Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then $(f(T, \{L_i\}) \equiv f(T, \{L_i\}) - f(T = 0, \{L_i\}))$:

•
$$p(T, \{L_i\}) = -f(T, \{L_i\}) - \sum_{i=1}^{D-1} \left[L_i \times \frac{\partial f(T, \{L_i\})}{\partial L_i} \right]$$

- How to think of a more realistic finite volume in a HIC context? (and from an analytic point of view)
- \Rightarrow Whatever way to implement this, it must have some sort of boundary!
- What if we implement a (perturbative) geometric confinement?
 - Disappearance of all of the infrared divergences,
 - Confinement of the particles inside the QGP region,
 - Loss of translation invariance in some of the directions,
 - Presence of new thermal & geometric (Casimir type of) effects.

About the thermodynamics then $(f(T, \{L_i\}) \equiv f(T, \{L_i\}) - f(T = 0, \{L_i\}))$:

•
$$p(T, \{L_i\}) = -f(T, \{L_i\}) - \sum_{i=1}^{D-1} \left[L_i \times \frac{\partial f(T, \{L_i\})}{\partial L_i} \right]$$

$$\mathbf{O} \ \mathcal{X}_{v}(T,L_{i}) = -\sum_{i=1}^{D-1} \left| L_{i} \times \frac{\partial f(T,\{L_{i}\})}{\partial L_{i}} \right|$$

JANUARY 12, 2017

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

GEOMETRIC CONFINEMENT FOR A SINGLE FREE SCALAR FIELD

Dr. Sylvain Mocliacci (UCT) Thermodynamics & geometric confinement January 12, 2017 14 / 37

・ロン ・四と ・ヨン ・ヨン

GEOMETRIC CONFINEMENT FOR A SINGLE FREE SCALAR FIELD

• Typical one-loop master sum-integral:

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & CEOMETRIC CONFINEMENT JANUARY 12, 2017 14 / 37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GEOMETRIC CONFINEMENT FOR A SINGLE FREE SCALAR FIELD

• Typical one-loop master sum-integral:

$$\begin{aligned} &-\frac{T^{1+2\alpha}}{2\prod_{i=1}^{c}\left(L_{i}\right)}\times\left(\frac{\bar{\Lambda}^{2}e^{\gamma}\mathbf{E}}{4\pi}\right)^{2-\frac{D}{2}}\times\\ &\times\sum_{n\in\mathbb{Z}^{1}}\sum_{\mathbf{k}\in\mathbb{N}^{c}}\int_{(2\pi)^{D-1-c}}^{\mathrm{d}D-1-c}\mathbf{p}\left[\frac{1}{\left(\omega_{n}^{2}+\sum_{i=1}^{c}\omega_{k_{i}}^{2}+\mathbf{p}^{2}+m^{2}\right)^{\alpha}}\right]\end{aligned}$$

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 14 / 37

Geometric confinement for a single free scalar field

• Typical one-loop master sum-integral:

$$\begin{aligned} &-\frac{T^{1+2\alpha}}{2\prod_{i=1}^{c}\left(L_{i}\right)}\times\left(\frac{\bar{\Lambda}^{2}e^{\gamma}\mathbf{E}}{4\pi}\right)^{2-\frac{D}{2}}\times\\ &\times\sum_{n\in\mathbb{Z}^{1}}\sum_{\boldsymbol{k}\in\mathbb{N}^{c}}\int_{(2\pi)^{D-1-c}}^{\mathrm{d}^{D-1-c}}\boldsymbol{p}\left[\frac{1}{\left(\omega_{n}^{2}+\sum_{i=1}^{c}\omega_{k_{i}}^{2}+\boldsymbol{p}^{2}+m^{2}\right)^{\alpha}}\right] \end{aligned}$$

Analytically continuing the above, say for c = 3 and m ≠ 0, gives such a (out
of many different possible) representation(s) for the proper free-energy:

$$\begin{split} \tilde{f}_{\mathrm{R}}^{(3)}(T,L_{1},L_{2},L_{3};m_{\mathrm{R}}) &= -\frac{T}{8L_{1}L_{2}L_{3}} \times \log\left(1-e^{-\frac{m_{\mathrm{R}}}{2}}\right) - \frac{m_{\mathrm{R}}T}{8\pi L_{1}L_{2}} \times \sum_{(s,s_{1})\in\mathbb{Z}^{2}\setminus\{0\}}^{\prime} \left[\frac{K_{1}\left(\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{3})^{2}s_{1}^{2}}\right)}{\sqrt{s^{2}+(2TL_{2})^{2}s_{1}^{2}}}\right] \\ &- \frac{m_{\mathrm{R}}T}{8\pi L_{3}} \times \sum_{(s,s_{1})\in\mathbb{Z}^{2}\setminus\{0\}}^{\prime} \left[\frac{K_{1}\left(\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{2})^{2}s_{1}^{2}}\right)}{L_{1}\sqrt{s^{2}+(2TL_{2})^{2}s_{1}^{2}}} + \frac{K_{1}\left(\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{1})^{2}s_{1}^{2}}\right)}{L_{2}\sqrt{s^{2}+(2TL_{1})^{2}s_{1}^{2}}}\right] \\ &+ \frac{T^{3}}{8\pi L_{1}} \times \sum_{(s,s_{1},s_{2})\in\mathbb{Z}^{2}\setminus\{0\}}^{\prime} \left[\frac{e^{-\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{2})^{2}s_{1}^{2}}+(2TL_{3})^{2}s_{2}^{2}}}{(s^{2}+(2TL_{2})^{2}s_{1}^{2}+(2TL_{3})^{2}s_{2}^{2}}\right)^{3/2}}\right] \\ &+ \frac{T^{3}}{8\pi L_{2}} \times \sum_{(s,s_{1},s_{2})\in\mathbb{Z}^{2}\setminus\{0\}}^{\prime} \left[\frac{e^{-\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{3})^{2}s_{2}^{2}}}{(s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{3})^{2}s_{2}^{2}}\right)^{3/2}}\right] \\ &+ \frac{T^{3}}{8\pi L_{3}} \times \sum_{(s,s_{1},s_{2})\in\mathbb{Z}^{3}\setminus\{0\}}^{\prime} \left[\frac{e^{-\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{3})^{2}s_{2}^{2}}}{(s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{3})^{2}s_{2}^{2}}\right)^{3/2}}{(s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{2})^{2}s_{2}^{2}+(2TL_{3})^{2}s_{2}^{2}}\right)}\right] \\ &- \frac{m_{\mathrm{R}}^{2}T^{2}}{4\pi^{2}} \times \sum_{(s,s_{1},s_{2},s_{3})\in\mathbb{Z}^{3}\setminus\{0\}} \left[\frac{K_{2}\left(\frac{m_{\mathrm{R}}}{T}\sqrt{s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{2})^{2}s_{2}^{2}+(2TL_{3})^{2}s_{2}^{2}}}{(s^{2}+(2TL_{1})^{2}s_{1}^{2}+(2TL_{2})^{2}s_{2}^{2}+(2TL_{3})^{2}s_{2}^{2}}\right)}\right], \quad (66)$$

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & CEOMETRIC CONFINEMENT JANUARY 12, 2017 15 / 37

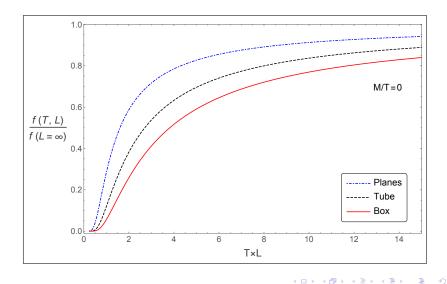
Now, finally, some new plots!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Scaling of the L_i -symmetric functions

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

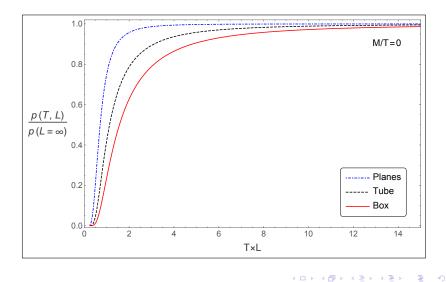
(1) FREE-ENERGY DENSITY FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$



DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 16 / 37

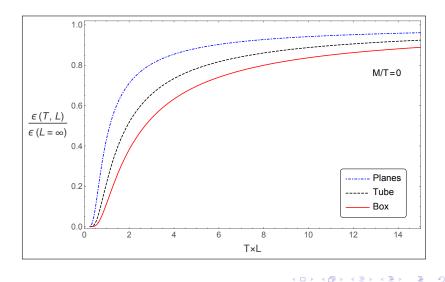
DR. SYLVAIN MOGLIACCI (UCT)

(1) PRESSURE FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$



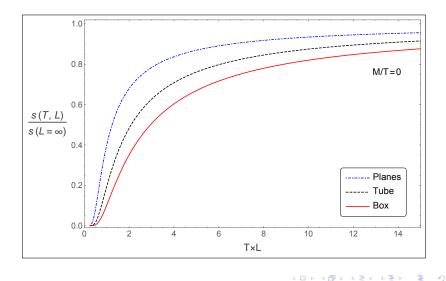
THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 17 / 37

(1) ENERGY DENSITY FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$



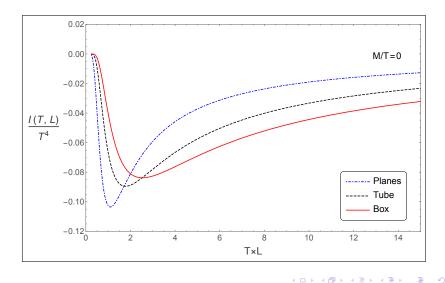
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 18 / 37

(1) ENTROPY DENSITY FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$



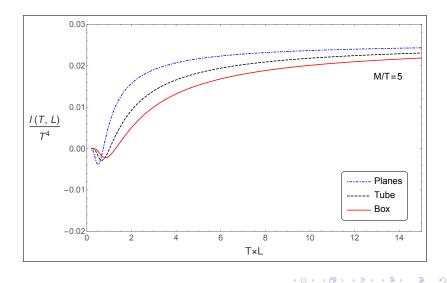
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 19 / 37

(1) TRACE ANOMALY FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$



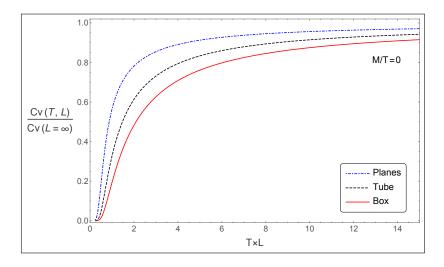
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 20 / 37

(1) TRACE ANOMALY FOR M/T = 5 $(L_1 = L_2 = L_3 \equiv L)$



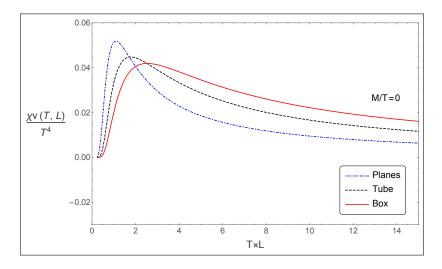
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 21 / 37

(1) HEAT CAPACITY FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$



DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 22 / 37

(1) GEOMETRIC SUSCEP. FOR M/T = 0 $(L_1 = L_2 = L_3 \equiv L)$

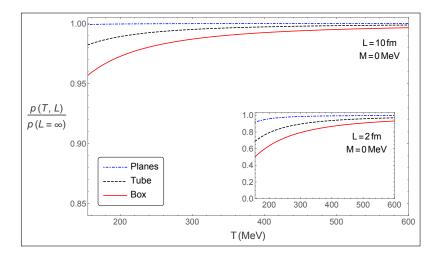


◆□▶ ◆@▶ ◆臣▶ ◆臣▶ 臣 ∽9٩

L_i-symmetric functions versus temperature

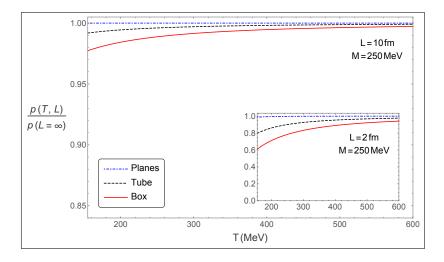
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(2) PRESSURE FOR M = 0 MEV $(L_1 = L_2 = L_3 \equiv L)$



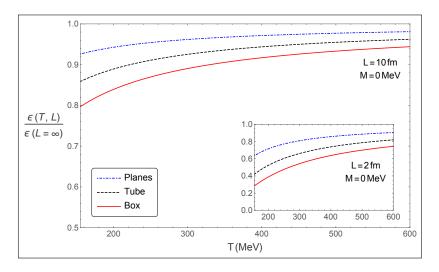
(ロ) (部) (主) (主) (三) の(

(2) PRESSURE FOR M = 250 MeV $(L_1 = L_2 = L_3 \equiv L)$



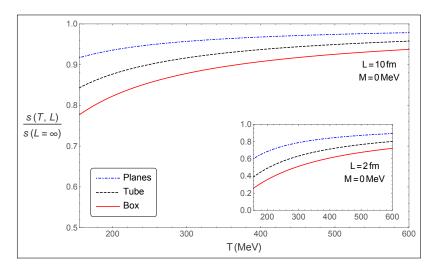
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 25 / 37

(2) ENERGY DENSITY FOR M = 0 MeV $(L_1 = L_2 = L_3 \equiv L)$



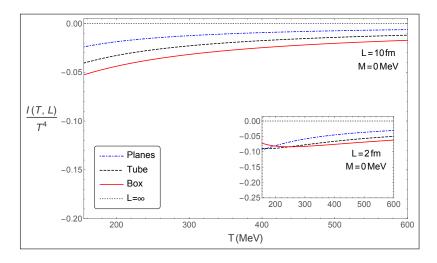
・ロト ・部ト ・ヨト ・ヨト 三田

(2) ENTROPY DENSITY FOR M = 0 MeV $(L_1 = L_2 = L_3 \equiv L)$



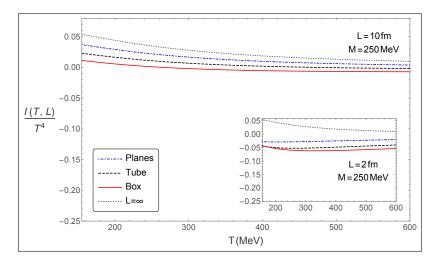
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▲

(2) TRACE ANOMALY FOR M = 0 MEV $(L_1 = L_2 = L_3 \equiv L)$



DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 28 / 37

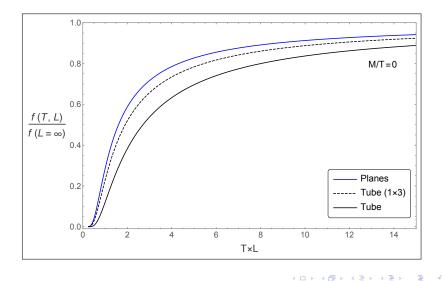
(2) TRACE ANOMALY FOR M = 250 MeV $(L_1 = L_2 = L_3 \equiv L)$



Scaling of the L_i -asymmetric functions

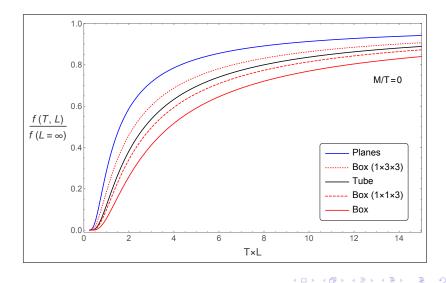
◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

(3A) Assymmetric Free-Energy density for M/T = 0



DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 30 / 37

(3B) Assymmetric Free-Energy density for M/T = 0



DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 31 / 37

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

(ロ) (同) (三) (三)

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

... Perhaps geometric confinement can help?
 ⇒ To be followed!

B > 4 B >

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

- ... Perhaps geometric confinement can help? \Rightarrow To be followed!
 - arXiv:1701.XXXXX (PRD?)

(4) (E) (A) (E) (A)

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

- ... Perhaps geometric confinement can help?
 ⇒ To be followed!
 - arXiv:1701.XXXXX (PRD?)
 - Higher order; effects of interactions;

3 N (K 3 N

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

- … Perhaps geometric confinement can help?
 ⇒ To be followed!
 - arXiv:1701.XXXXX (PRD?)
 - Higher order; effects of interactions;
 - Application to QCD;

• • = • • = •

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

• ... Perhaps geometric confinement can help?

 \Rightarrow To be followed!

- arXiv:1701.XXXXX (PRD?)
- Higher order; effects of interactions;
- Application to QCD;
- New (finite volume) screening effects;

(ロ) (同) (三) (三)

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

• ... Perhaps geometric confinement can help?

 \Rightarrow To be followed!

- arXiv:1701.XXXXX (PRD?)
- Higher order; effects of interactions;
- Application to QCD;
- New (finite volume) screening effects;
- 6 ...

(ロ) (同) (三) (三)

CONCLUSION

- DR/HTLpt shows good agreement at all displayed temperatures
 - \Rightarrow Consistence of the (DR/HTLpt) resummed perturbative frameworks!

But not ideal...

• ... Perhaps geometric confinement can help?

 \Rightarrow To be followed!

- arXiv:1701.XXXXX (PRD?)
- Higher order; effects of interactions;
- Application to QCD;
- New (finite volume) screening effects;
- 5 ...

THANKS A LOT FOR YOUR ATTENTION!

< 回 > < 三 > < 三 >

Backup slides

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BACKUP: SOME NOTATION

・ロト ・回ト ・ヨト ・ヨト

3

BACKUI

BACKUP: SOME NOTATION

At one-loop, contributions coming from, e.g., the quarks read:

$$p_{q_f}(T, \mu) = 2 \oint_{\{K\}} \log \left[A_{\mathsf{S}}^2(i\widetilde{\omega}_n + \mu_f, k) - A_0^2(i\widetilde{\omega}_n + \mu_f, k) \right]$$

・ロン ・四と ・ヨン ・ヨン

BACKUI

BACKUP: SOME NOTATION

At one-loop, contributions coming from, e.g., the quarks read:

$$p_{q_f}(T,\mu) = 2 \oint_{\{K\}} \log \left[A_{\mathsf{S}}^2(i\widetilde{\omega}_n + \mu_f, k) - A_0^2(i\widetilde{\omega}_n + \mu_f, k) \right]$$

With A_S and A_0 :

$$\begin{aligned} A_0(i\widetilde{\omega}_n + \mu_f, k) &\equiv i\widetilde{\omega}_n + \mu_f - \frac{m_{\mathsf{q}_f}^2}{i\widetilde{\omega}_n + \mu_f} \; \widetilde{\mathcal{T}}_{\mathsf{K}}(i\widetilde{\omega}_n + \mu_f, k) \\ A_{\mathsf{S}}(i\widetilde{\omega}_n + \mu_f, k) &\equiv k + \frac{m_{\mathsf{q}_f}^2}{k} \Big[1 - \widetilde{\mathcal{T}}_{\mathsf{K}}(i\widetilde{\omega}_n + \mu_f, k) \Big] \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BACKUI

BACKUP: SOME NOTATION

At one-loop, contributions coming from, e.g., the quarks read:

$$p_{q_f}(T, \mu) = 2 \oint_{\{K\}} \log \left[A_{\mathsf{S}}^2(i\widetilde{\omega}_n + \mu_f, k) - A_0^2(i\widetilde{\omega}_n + \mu_f, k) \right]$$

With A_S and A_0 :

$$A_{0}(i\widetilde{\omega}_{n} + \mu_{f}, k) \equiv i\widetilde{\omega}_{n} + \mu_{f} - \frac{m_{q_{f}}^{2}}{i\widetilde{\omega}_{n} + \mu_{f}} \widetilde{T}_{K}(i\widetilde{\omega}_{n} + \mu_{f}, k)$$
$$A_{S}(i\widetilde{\omega}_{n} + \mu_{f}, k) \equiv k + \frac{m_{q_{f}}^{2}}{k} \left[1 - \widetilde{T}_{K}(i\widetilde{\omega}_{n} + \mu_{f}, k)\right]$$

Where the HTL function $\widetilde{\mathcal{T}}_K$ can be represented as:

$$\widetilde{\mathcal{T}}_{\mathsf{K}}(i\widetilde{\omega}_n + \mu_f, k) = {}_2F_1\left(\frac{1}{2}, 1; \frac{3}{2} - \epsilon; \frac{k^2}{(i\widetilde{\omega}_n + \mu_f)^2}\right)$$

イロト イポト イヨト イヨト

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 33 / 37

BACKUP: BRANCH CUTS

Dr. Sylvain Mocliacci (UCT) Thermodynamics & ceometric confinement January 12, 2017 34 / 37

イロン イヨン イヨン イヨン

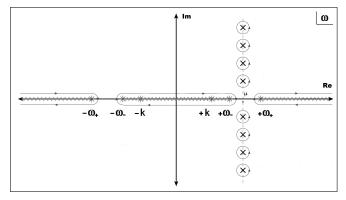
э.

BACKUP: BRANCH CUTS

By contour integral representations, sum-integrals carried out using non trivial branch cuts from both the logarithm and the $_2F_1$ (HTL) functions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By contour integral representations, sum-integrals carried out using non trivial branch cuts from both the logarithm and the $_2F_1$ (HTL) functions



(ロ) (同) (三) (三)

BACKU

BACKUP: HTLPT/DR PARAMETERS AND LATTICE DATA

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & CEOMETRIC CONFINEMENT JANUARY 12, 2017 35 / 37

・ロト ・四ト ・ヨト ・ヨト

æ

BACKUP

BACKUP: HTLPT/DR parameters and lattice data

• Running of the coupling: HTLpt/DR \rightarrow 1/2-loop perturbative running

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backuf

BACKUP: HTLPT/DR PARAMETERS AND LATTICE DATA

- Running of the coupling: HTLpt/DR \rightarrow 1/2-loop perturbative running
- m_D , m_{q_f} mass parameters: Mainly their weak coupling values at 1/2-loop

(D) (A) (A) (A)

Backuf

BACKUP: HTLPT/DR PARAMETERS AND LATTICE DATA

- Running of the coupling: HTLpt/DR \rightarrow 1/2-loop perturbative running
- m_D , m_{q_f} mass parameters: Mainly their weak coupling values at 1/2-loop
- QCD scale: Matching the running to lattice value at a reference scale $\Rightarrow \text{Gives } \Lambda_{\overline{\text{MS}}}^{\text{HTLpt/DR}} = 176/283 ~\pm~ 30 \text{ MeV to be "conservative"}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Backuf

BACKUP: HTLPT/DR PARAMETERS AND LATTICE DATA

 Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900], LHC [Müller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

イロト イポト イヨト イヨト

BACKUP

BACKUP: HTLPT/DR PARAMETERS AND LATTICE DATA

 Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900], LHC [Müller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

• Lattice data from:

BNL-B [Bazavov et al., PRD 88 (2013) and PRL 111 (2013); Schmidt, JPCS 432 (2013) and NPA 904-905 (2013)]
WB [Borsányi et al., JHEP 01 (2012), PRL 111 (2013) and JHEP 08 (2012); Borsányi, NPA 904-905 (2013)]
RBC-B [Petreczky et al., PoS LAT 2009 (2009)]

(D) (A) (A) (A)

BACKUP

BACKUP: HTLPT/DR PARAMETERS AND LATTICE DATA

 Relevant to nowadays experiments at RHIC [Tannenbaum, arXiv:1201.5900], LHC [Müller, ARNPS 62 (2012)], FAIR [Heuser, NPA 904-905 (2013)] and NICA [Kekelidze et al., NPA 904-905 (2013)]:

Three massless flavors and colors

• Lattice data from:

BNL-B [Bazavov et al., PRD 88 (2013) and PRL 111 (2013); Schmidt, JPCS 432 (2013) and NPA 904-905 (2013)]
WB [Borsányi et al., JHEP 01 (2012), PRL 111 (2013) and JHEP 08 (2012); Borsányi, NPA 904-905 (2013)]
RBC-B [Petreczky et al., PoS LAT 2009 (2009)]

(D) (A) (A) (A)

• Truncated 3-loop HTLpt results from:

[Haque et al., PRD 89 (2014)]

BACKUI

BACKUP: HTLPT/DR HIGHER ORDER CUMULANT

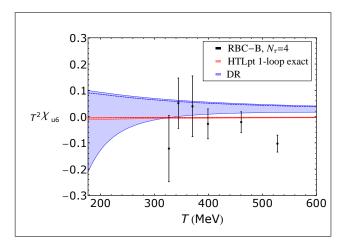
DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 36 / 37

・ロト ・四ト ・ヨト ・ヨト

æ

BACKUI

BACKUP: HTLPT/DR HIGHER ORDER CUMULANT



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

BACKU

BACKUP: HTLPT/DR RATIOS OF CUMULANTS

・ロト ・四ト ・ヨト ・ヨト

3

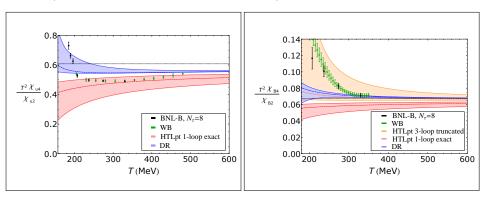
BACKU

BACKUP: HTLPT/DR RATIOS OF CUMULANTS

1

Recall that:

$$\chi_{\mathsf{B4}} = \left(\chi_{\mathsf{u4}} + \chi_{\mathsf{d4}} + \chi_{\mathsf{s4}} + 4\chi_{\mathsf{u3d}} + 4\chi_{\mathsf{u3s}} + 4\chi_{\mathsf{d3u}} + 4\chi_{\mathsf{d3s}} + 4\chi_{\mathsf{s3u}} + 4\chi_{\mathsf{s3d}} + 6\chi_{\mathsf{u2d2}} + 6\chi_{\mathsf{d2s2}} + 6\chi_{\mathsf{u2s2}} + 12\chi_{\mathsf{u2ds}} + 12\chi_{\mathsf{d2us}} + 12\chi_{\mathsf{s2ud}}\right)/81$$
$$\chi_{\mathsf{B2}} = \left(\chi_{\mathsf{u2}} + \chi_{\mathsf{d2}} + \chi_{\mathsf{s2}} + 2\chi_{\mathsf{ud}} + 2\chi_{\mathsf{ds}} + 2\chi_{\mathsf{us}}\right)/9$$



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のなの

DR. SYLVAIN MOCLIACCI (UCT) THERMODYNAMICS & GEOMETRIC CONFINEMENT JANUARY 12, 2017 37 / 37