Measurements with pion beams in HADESwhat are they good for ?- results(preliminary) and perspectives

✓ Motivation:

vector $meson(\rho)$ in-medium mass modification

- electromagnetic structure of baryons
- e+e- results from NN exclusive channels

role of of $\rho \leftrightarrow$ baryon couplings, Vector Dominance Model

✓ Experiment : preliminary results from run in 2014

- 2pion production
- e+e-
- Strangness in cold nuclear matter

P. Salabura M. Smoluchowski Institute of Physcis Jagiellonian University, Kraków Poland

Vector mesons in medium

G.E. Brown / M. Rho: Scaling of masses with quark condensate - order parameter of Chiral Symmetry restoration (PRL 1989, 1991)

$$m^* \approx m \left[\left\langle \overline{q} q^* \right\rangle / \left\langle \overline{q} q \right\rangle \right]^{\mu}$$

T. Hatsuda / S. Lee: QCD sum rules PRC46(1992)R34

$$m^* = m(1 - \alpha \rho^* / \rho)$$

Measurement of the mass of short-lived mesons embbeded in nuclear matter

$$\mathsf{N}_{e^+e^-} \sim \mathsf{\Gamma}_{V \to e^+e^-} \cdot \mathsf{T}_{\mathsf{m}} = \frac{\mathsf{\Gamma}_{e^+e^-}}{\mathsf{\Gamma}_{\mathsf{tot}}}$$

- Iow e+e- rates (~10⁻⁵)
- e+e- are not interacting with nuclear

matter : IT IS NOT the case for

hadronic decays

ρ-in medium: cold nuclear matter

p+p vs p+Nb @ 3.5 GeV

• p+p cockail : based on known sources fixed to data π^0 /η/ ω/ ρ , Δ

underestimeted e+e- yield below VM pole \rightarrow missing component -> higher resonances (Δ , N^{*})->Ne+e- ?

remarkable difference between spectra from "fast" and "slow" sources

HADES

e+e- excess in p+Nb

d clear excess in p+A below VM pole \rightarrow " ρ - meson" line shape from cold nuclear matter

- modified (in-medium) spectral function ?
- GiBUU: secondary reactions $\pi+N \rightarrow N^*$ (1520),.. $\rightarrow N\rho \rightarrow Ne+e-$

→ HADES pion beam programme !

dileptons from HI from SIS18 - RHIC

melting of the ρ meson over all energy range; RHIC (STAR,PHENIX), SPS(CERES,NA60), SIS18 HADES

Electromagnetic structure of baryons

Models for Dalitz decays

QED: point-like $R-\gamma^*$ vertex

Coupling constants fixed from R->N γ Strong dependence on spin, parity

M. Zetenyi et al. PRC 67, 044002 (2003). **M. I. Krivoruchenko** et al. Ann. Phys. 296, 299 (2002).

extended VDM1:

M. I. Krivoruchenko et al. Ann. Phys. 296, 299 (2002).

extended VDM2:

H.B. O'Connell, et al.Prog. Part. Nucl. Phys. 39, 201 (1997).M. Zetenyi, G. Wolf PRC86(2012) 065209

Vector Meson Dominance in work for mesons...

very important for hadronic corrections in muon g-2...

Theory

Terschlusen and Leupold [Phys. Lett. B 691 191 (2009)] Ivashyn S. [Prob. Atom. Sci. Tech. 2012N1 179 (2012)] Schneider, Kubis, Nieking [Phys. Rev. D86 054013 (2012)]

VDM for Baryons?

• For the electromagnetic decay of the ρ -meson to e^+e^- we use now a width propor-

tional to M^{-3} , as resulting from vector meson dominance (VMD) [9], instead of one proportional to M from extended VMD [10], with M being the invariant mass of the ρ -meson. For our calculations this is more appropriate since we neglect a direct coupling of the virtual photon and can not treat the resulting interference terms properly within a semi-classical transport approach.

<u>e+ e- pairs from pi- A reactions: Comment</u> <u>M. Effenberger, E.L. Bratkovskaya, W. Cassing, U. Mosel (Giessen U.)</u>. Jan 1999. 9 pp. Published in **Phys.Rev. C60 (1999) 027601**

Δ^+ Dalitz decay via $\Delta^+ \{ \rightarrow pe^+e^- \}$

exclusive pn→pne+e-

HADES

Higher mass resonances @3.5 GeV

Resonance model:

Z. Teis et al., Z. Phys. A356 (1997) 421 J. Weil et al. (GiBUU) Eur. Phys. J. A48 (2012) 111

Many Δ , N* states contributing..

Eur. Phys. J. A (2014) 50: 82

p+p→ppe⁺e⁻ @ 3.5 GeV

- Several contributing resonances : N*(1520), N*(1720), Δ (1620), Δ (1905)
- ambiguites in resonance contributions (R) covered by grey band

Clear excess above expected yield from the point-like coupling seems to originate from N*(1520) region

Pion beam facility at GSI

 Proposed middle of 90'es (H. Bokemeyer, W.Koenig, V. Metag, A. Schroter). Comissioned end of 90'es–first paper with results in 1999 (Progr. In Part. and Nucl. Physics 42(1999)247

The HADES Pion Beam Facility

HADES Physics progarmme'2014 with pion HADES

Main advantage of pion induced reactions Resonance excitation can be selected by the chosen beam (pion) momentum

HADES starts with $\sqrt{s} = (1.46 - 1.55) \text{ GeV} - N^*(1520)$ resonance region

1) π + π - production : off-shell coupling of ρ to resonance

 $\rho \rightarrow \pi$ + π - (~100%) "golden channel"

Most of π + π - data 1.3 < \sqrt{s} <2 come from Manley et.al PRD30,(1984) 904 based on 240 000 events (differential; distributions not available)

2) e+e-: never measured from pion induced reactions

Resonance Dalitz decays $R \rightarrow Ne+e-Reference$ for p+Nb result

3) strangeness production of nucleus : K^{\pm} , K^{0} , φ

Absorption of mesons in cold nuclear matter.

pion beam in HADES 2014

HADE\$

- Reaction N+Be 8-10* 10^{10} N₂ ions/spill (4s)
- secondary π^- with I ~ 3-4 10⁵/spill @ 0.7 GeV/c limited by primary beam Intensity
- Total ~15 days of continus measurement.
- Pion momentum $\Delta p/p = 2.2\%$ (σ) and ~50% acceptance @ central momentum
- in beam tracking system: (X1,X2/Y1/Y2) for pion mometum determination : $\Delta p/p = 0.1\%$

Strategy for analysis of pion data

- Normalization via measured π -p elastic scattering of known σ (SAID Partial Wave Solution)
- Extract contributions (ρ) from $\pi^- p \rightarrow \pi^+ \pi^- n$ (HADES), $\pi^- p \rightarrow \pi^0 \pi^0 n$ (Cristall Ball) @ p=656 (\sqrt{s} =1.468), **p=690 (1.489)**, p=748 (1.526) , p=800(1.556) , $\gamma p \rightarrow \pi^0 \pi^0 p$ (Bonn) & $\gamma p \rightarrow \pi^+ \pi^- p$ (SAPHIR, CLAS) (\sqrt{s} >1.75) using Partial Wave Analysis (Bonn-Gatchina framework)
- compare to π p -> e+e- n @ 690 MeV/c exclusive channel

elastic channels

Elastic events: example 748 MeV/c

$\pi^{-}p \rightarrow \pi^{+}\pi^{-}n$

• Clean Separation of proton and Carbon contributions

(by scaling factors derived from π -p eastic scattering)

HADES

Partial Wave Analysis (Bonn/Gatchina)

A.Saranstev et al..

- An excellent tool widely used in hadron spectroscopy (γN , πN , pp reactions)
- Based on K-Matrix approach (coupled channels): allows to fit several reactions channels at the same time with strong unitarity constraints
- Take into account specific detector acceptances and efficiencies (data are analysed together with phase space Monte Carlo passed through detector response)
- Fit is done on event by event basis with maximum likehood method (correlation in multidimensional space following are taken into account!)

At present ~0.34 mln data points taken in global fit with χ^2 /DOF= 1.6

In HADES we use Energy dependent extraction of amplitudes: several energy points are analysed together with different final states. Resonance properties (masses, widths are not subject to fit)

Already several channels analysed and published (pp \rightarrow pk Λ , pp \rightarrow pn π +, pp π^0)

Double pion Production in pion and photo -induced

$$K_{ij} = \sum_{\alpha} \frac{g_i^{\alpha} g_j^{\alpha}}{M_{\alpha}^2 - s} + f_{ij}(s) \qquad \qquad f_{ij} = \frac{f_{ij}^{(1)} + f_{ij}^{(2)}}{s - s_0^{ij}}$$

$$P_{j} = \sum_{\alpha} \frac{\Lambda^{\alpha} g_{j}^{\alpha}}{M_{\alpha}^{2} - s} + F_{j}(s)$$

$$\Lambda \text{ -helicity ampl}$$

In both same K matrix accounts for hadronic part : resonances with masses M_{α} , coupling to channels g(i,j), phase space for decay ρ and background terms f_{ij}

Baryon data base

DATA	BG2013-2014	added in BG2014-2015
$\pi N \to \pi N$ ampl.	SAID or Hoehler energy fixed	
$\gamma p \to \pi N$	$\frac{d\sigma}{d\Omega}, \Sigma, T, P, E, G, H$	E,G,T,P (CB-ELSA, CLAS)
$\gamma n \to \pi N$	$\frac{d\sigma}{d\Omega}, \Sigma, T, P$	$\frac{d\sigma}{d\Omega}(MAMI)$
$\gamma n \to \eta n$	$rac{d\sigma}{d\Omega}, \Sigma$	$rac{d\sigma}{d\Omega}$ (MAMI)
$\gamma p \to \eta p$	$\frac{d\sigma}{d\Omega}, \Sigma$	T, P, H, E (CB-ELSA)
$\gamma p \to \eta' p$		$rac{d\sigma}{d\Omega}, \Sigma$
$\gamma p \to K^+ \Lambda$	$\frac{d\sigma}{d\Omega}, \Sigma, P, T, C_x, C_z, O_{x'}, O_{z'}$	Σ, P, T, O_x, O_z (CLAS)
$\gamma p \to K^+ \Sigma^0$	$\frac{d\sigma}{d\Omega}, \Sigma, P, C_x, C_z$	Σ, P, T, O_x, O_z (CLAS)
$\gamma p \to K^0 \Sigma^+$	$\frac{d\sigma}{d\Omega}, \Sigma, P$	
$\pi^- p \to \eta n$	$\frac{d\sigma}{d\Omega}$	
$\pi^- p \to K^0 \Lambda$	$\frac{d\sigma}{d\Omega}, P, \beta$	
$\pi^- p \to K^0 \Sigma^0$	$\frac{d\sigma}{d\Omega}$, $P(K^0\Sigma^0) \frac{d\sigma}{d\Omega} (K^+\Sigma^-)$	
$\pi^+ p \to K^+ \Sigma^+$	$\frac{d\sigma}{d\Omega}, P, \beta$	
$\pi^- p \to \pi^0 \pi^0 n$	$rac{d\sigma}{d\Omega}$ (Crystal Ball)	
$\pi^- p \to \pi^+ \pi^- n$		$rac{d\sigma}{d\Omega}$ (HADES)
$\gamma p \to \pi^0 \pi^0 p$	$\frac{d\sigma}{d\Omega}, \Sigma, E, I_c, I_s$	
$\gamma p \to \pi^0 \eta p$	$\frac{d\sigma}{d\Omega}, \Sigma, I_c, I_s$	
$\gamma p \to \pi^+ \pi^- p$		$rac{d\sigma}{d\Omega}, I_c, I_s$ (CLAS)
$\gamma p \to \omega p$		$rac{d\sigma}{d\Omega}, \Sigma, ho_{ij}^{0}, ho_{ij}^{1}, ho_{ij}^{2}, E, G$ (CB-ELSA)
$\gamma p \to K^*(890)\Lambda$		$rac{d\sigma}{d\Omega}, \hat{\Sigma}, ho_{ij}^{ar{0}}$ (CLAS)

Separation into initial states (waves)

A.Saranstev

 π -p \rightarrow $\pi^0\pi^0$ n

 $\gamma p \rightarrow \pi^0 \pi^0 p$

In the Energy range of 1.45-1.55 GeV in 2 pion production only few resonances matters D13(1520), P11(1440)

Separation into final states

 ρ Does Not contribute because it is I=1, hence does not decay to 2 π^0

Complementary character of reactions..

Different shapes are due to different resonance contributions P11(1440) and D13(1520)

Example of fit for π -p $\rightarrow \pi$ + π - p=690 MeV

2 pion invariant mass - ρ contribution

PRELIMINARY

Inside HADES acceptance

 Dominated by s-channel resonant D13(1520) production

 $\sigma_{o} = 2.3 \text{ mb}$ (PWA solutions)

Total cross sections

HADES

BR(D13(1520)→Nρ (17%)

e+e- inclusive spectra @ p=690 MeV/c

PRELIMINARY Inclusive inv. mass Miss. Mass for M>120 MeV 400 10⁴ PRELIMINARY π - p \rightarrow e+e-n 350 PEfree+ quasi free. 10³ 300 250 10² 200 150 10 100 50 E 8.6 0.9 1.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.1 1.3 0.1 0

- Too low statistics from carbon (scaled by 5) data for subtraction
- free+"quasi-free" π -p \rightarrow e+e- n events selected by missing mass cut
- e+e- yield from proton to carbon ~ 1:2 ($\pm 20\%$)

Exclusive π -p \rightarrow e+e- n: comparison to model ADES

PRELIMINARY

Dilepton production in pion-nucleon collisions in an effective field theory approach

Miklós Zétényi* and György Wolf[†]

We present a model of electron-positron pair production in pion-nucleon collisions in the exclusive reaction $\pi N \rightarrow N e^+ e^-$. The model is based on an effective field theory approach, incorporating 16 baryon resonances below 2 GeV. Parameters of the model are fitted to pion photoproduction data. We present the resulting dilepton invariant mass spectra for $\pi^- p$ collisions up to $\sqrt{s} = 1.9$ GeV center-of-mass collision energy. These results are meant to give predictions for the planned experiments at the HADES spectrometer in GSI, Darmstadt.

Phys. Rev. C 86 (2012) 065209

VMD form factor:

$$F_{\rm VMD}(k^2) = -\frac{e}{g_{\rho}} \frac{k^2}{k^2 - m_{\rho}^2 + i\sqrt{k^2}\Gamma_{\rho}(k^2)}$$

 k^2 instead of m_{ρ}^2

a) s-b) u-c) t-channel diagrams d) contact interaction term e) vector meson exchange diagram f) s-g) u-channel baryon resonance contributions

A consistent picture

HADES

Strangeness production in π A

FOPI : K⁰ production in pion induced reactions

 K_{s}^{0} Cross-Section π +A

HADES goal: increase statistics, differential data

 HADES: K0/K+ (p/Nb) only rescattering, no strong absorption

What is the A dependency for K- as compared to K+ ?

- Reduced mass -> b>2/3
- Absorption ...-> b<2/3

Kaon production

HADES

Transparency ratio in "cold matter"

• "disapearance of meson in nuclear matter"

reduce nuclear effects

ϕ absorption in π - A collisions @ 1. 7 GeV/c

ϕ/K^{-} and ϕ/ω ratio in A + A

w.r.t ω (i.e OZI rules)... but large absorption in cold nuclear matter?

Maybe origin is same? For example consider strong (15%) BR($\phi \rightarrow \rho \pi$) which can be increase in medium, but then also can lead to $\rho \pi \rightarrow \phi$ production

Summary and outlook

- HADES & pion beam is an unique tool to understand in details baryon<-> ρ couplings
- Significant off-shell ρ contribution originating from D13(1520) shown by combined PWA and e+e- data
- Large impact on e+e- production !

Important for interpretation of HADES p+Nb

 New good quality data on kaon and meson production off nucleus

WHAT NEXT?

- High statistics beam energy scan : continutation and extension to third resonance region
- Hadronic final states ,one pion, 2 pion, hyperon production to control resonance excitation (HADES upgrade with el. calorimeter !- neutral final states!)
- Dielectron measurements
- Hadron and dielectron production in π+A

The HADES collaboration

Tofino

Shower

HADES

13 Institutions Technical Proposal accepted 1995 First experiments 2001

Cracow (Univ.), Poland

- Darmstadt (GSI), Germany
 - Dresden (FZD), Germany
 - Dubna (JINR), Russia
 - Frankfurt (Univ.), Germany
 - Giessen (Univ.), Germany
 - München (TUM), Germany
 - Moscow (ITEP,RAS), Russia
 - Nicosia (Univ.), Cyprus
 - Orsay (IPN), France
 - Rez (CAS, NPI), Czech Rep.
- Sant. de Compostela (Univ.), Spain

LIP, Portugal

MDC IV

MDC III

And with particular thanks to A. Sarantsev

RICH

Magnet