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Introduction

The conjectured QCD phase diagram

... might change, depending on whom you ask.
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Experiment: Heavy Ion Collisions

?

0 sec Initial collision

∼ 10−25 sec Thermalisation

∼ 10−24 sec Thermalised QGP?

∼ 10−23 sec Hadronisation

Freezeout

I In some phase the plasma might be well described by hydrodynamics.

I The analysis of experiment in many parts relies on models

I Many effects can occur. (e.g. chiral magnetic effect)
But: impact depends on plasma properties of QCD.

⇒ First principles measurements of plasma properties are mandatory!

Lattice QCD is the prefered tool!
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Exploring the transition in the chiral limit at Nf = 2

Directly accessible: Zero density (µ = 0)
Enlarged parameter space relevant for the QCD phase diagram:
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I The charm quark is to heavy to influence the transition properties.
(might affect plasma properties above TC )

I Isospin breaking effects also won’t effect the order much.
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Exploring the transition in the chiral limit at Nf = 2

Directly accessible: Zero density (µ = 0)
Enlarged parameter space relevant for the QCD phase diagram:
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I Common believe:
The features of the Columbia plot are well known!

I However: This is not entirely true!
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Known facts
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SU(3) chiral limit:

I First order phase transition
[ Pisarski, Wilczek, PRD 29, 338 (1984) ]

I Order parameter:
Chiral condensate

I Associated broken symmetry:
SUV (3)× SUA(3)

Pure gauge theory:

I First order phase transition
[ Yaffe, Svetitsky, PRD 26, 963 (1982) ]

I Order parameter:
Polyakov loop

I Associated broken symmetry:
Center symmetry
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Known facts
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Physical point: Crossover
[ Aoki et al, Nature 444, 675 (2006) ]

I Staggered fermions:
(continuum limit)
TC ≈ 150− 160 MeV

[ Borsanyi et al, JHEP 1009, 073 (2010) ]

[ Bazavov et al, PRD 85, 054503 (2012) ]

I Domain wall fermions:
(no continuum limit)
TC ≈ 155(1)(8) MeV

[ Bhattacharya et al, PRL113, 082001 (2014) ]
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Resulting phase diagram
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I Border crossover/1st order:
Z(2) critical lines

I Positions/Shape:
Has to be clarified!

I Particularly relevant:
Two possible scenarios for the
Nf = 2 transition in the chiral
limit!

⇒ Let’s see what the lattice says!

Here: Focus on the chiral critical line!



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Exploring the transition in the chiral limit at Nf = 2

Resulting phase diagram

0

ms

∞

mud

Nf = 2

∞

pure gauge

N f
=
3
N
f
=

1

crossover

1st

2nd
Z(2)

1st 2nd
Z(2)

?

physical
point

I Border crossover/1st order:
Z(2) critical lines

I Positions/Shape:
Has to be clarified!

I Particularly relevant:
Two possible scenarios for the
Nf = 2 transition in the chiral
limit!

⇒ Let’s see what the lattice says!

Here: Focus on the chiral critical line!



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions
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Chiral critical line: Nf = 3 region - Nt = 4
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Staggered fermions:
Nf = 3 critical point

[ Karsch et al, PLB 520, 41 (2001) ]

[ de Forcrand, Philipsen, NPB 673, 170 (2003) ]
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Wilson fermions:

mc
uds ≈ 36mphys

ud

Nt = 4 out of the scaling region!
[ Jin, PRD 91, 014508 (2015) ]
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Exploring the transition in the chiral limit at Nf = 2

Chiral critical line: Nf = 3 region - Nt > 4
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Staggered fermions:
1st order region shrinks

[ de Forcrand et al, PoS LAT 2007, 178 ]

[ Endrődi et al, PoS LAT 2007, 182 ]

mc
uds(Nt = 6) ≈ mc

uds(Nt = 4)/5

Newest upper bound Nt > 6:

mc
uds < 0.1mphys

ud

[ Ding et al, PoS LAT 2011, 191 ]

Wilson fermions:
Continuum from Nt = 6 and 8

⇒ mc
uds ≈ 4mphys

ud

[ Jin, PRD 91, 014508 (2015) ]
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Chiral critical line: ms > mud

Two possible scenarios:

scenario (1): scenario (2):
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I It has to be true phase transition. [ Pisarki, Wilczek, PRD 29, 338 (1984) ]

I But it can be of first or second order!
[ Butti et al, JHEP 0308, 029 (2003); Pelisseto, Vicari, 1309.5446 ]
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Impact on finite density scenarios Nf = 2

Chiral limit:

T

µB0 1st

I Expect first order transition at T = 0? [ review: Fukushima, Hatsuda, RPP74 (2011) ]

I Critical endpoint exists!



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Exploring the transition in the chiral limit at Nf = 2

Impact on finite density scenarios Nf = 2

Chiral limit:

T

µB0 1st

2nd

2nd order scenario
O(4) or U(2)×U(2)→U(2)

critical endpoint

I Expect first order transition at T = 0? [ review: Fukushima, Hatsuda, RPP74 (2011) ]

I Critical endpoint exists!
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Exploring the transition in the chiral limit at Nf = 2

Impact on finite density scenarios Nf = 2

Finite mud :

T

µB0 1st

2nd order scenario
O(4) or U(2)×U(2)→U(2)

critical endpoint

crossover

I Expect first order transition at T = 0? [ review: Fukushima, Hatsuda, RPP74 (2011) ]

I Critical endpoint exists!
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Exploring the transition in the chiral limit at Nf = 2

Impact on finite density scenarios Nf = 2

Finite mud :

T

µB0 1st

2nd order scenario
O(4) or U(2)×U(2)→U(2)

critical endpoint

crossover

I Expect first order transition at T = 0? [ review: Fukushima, Hatsuda, RPP74 (2011) ]

I Finite strange quark mass is not expected to change much!
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Exploring the transition in the chiral limit at Nf = 2

Impact on finite density scenarios Nf = 2

Chiral limit:

T

µB0 1st

1st

1st order scenario

I Expect first order transition at T = 0? [ review: Fukushima, Hatsuda, RPP74 (2011) ]

I No critical endpoint!
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Exploring the transition in the chiral limit at Nf = 2

Impact on finite density scenarios Nf = 2

Finite mud :

T

µB0

1st order scenario

mud > m
Z(2)
ud

crossover

I Expect first order transition at T = 0? [ review: Fukushima, Hatsuda, RPP74 (2011) ]

I No critical endpoint!



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Exploring the transition in the chiral limit at Nf = 2

Assessing the two scenarios - Our choice

Simulate at Nf = 2:

scenario (1): scenario (2):
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I Simulations are less expensive.

I Can use Wilson fermions on large lattices using the available fast
algorithms and the T = 0 input from CLS.
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Assessing the two scenarios – Scaling

I Cannot simulate directly in (or very close to) the chiral limit.

Simulate at larger mud ; look for critical scaling for mud → 0

I What type of scaling can be expected in the two cases?

I 2nd order: standard O(4) or U(2)× U(2)→ U(2) scaling
order parameter: Chiral condensate
external field: h = mud

I 1st order: Z(2) scaling
order parameter: ???
external feld: ??? maybe h = mud −mcr

ud?

I How close to mud = 0 is necessary?

I Breaking of chiral symmetry due to lattice:
Scaling laws will only be correct in the continuum limit!
⇒ Need to be close enough to the continuum (large Nt)!

I There is a number of studies but no conclusive result!
(contradicting results for staggered; no control over systematics for Wilson)
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Exploring the transition in the chiral limit at Nf = 2

Scaling of the transition temperature
Scaling of the critical temperature with the external field:

TC (h) = TC (0)
[
1 + C h1/(δ β)

]
+ sv .

Most studies: O(4) scaling

[ Bornyakov et al, PRD 82, 014502 (2010) ]

I Large pion masses

I Control over systematic effects?

Difficult to distinguish:

I O(4): δ β = 1.861

I U(2): δ β ≈ 1.8

I Z(2): δ β = 1.564

[ tmfT collaboration, PRD 87, 074508 (2013) ]
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Exploring the transition in the chiral limit at Nf = 2

Scaling of the transition temperature

Scaling of TC :

TC (h) = TC (0)
[
1 + C h1/(δβ)

]
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Z(2) scaling,

Even with one order of magnitude smaller error bars no conlusions possible!
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Exploring the transition in the chiral limit at Nf = 2

Other types of scaling

I Scaling of the order parameter (chiral condensate):

〈
ψ̄ψ
〉
∼ h1/δ Ψ (z, h) with z =

τ

h1/(δ β)

Ψ: universal scaling function

Problem: Ψ is known for O(4) only.

So far simulations show consistency with O(4) scaling.

But U(2)xU(2)→ U(2) and Z(2) scaling might be similar?

I Scaling of the Binder cumulant:

Very powerful tool!

However: So far no one has seen the onset of this scaling!

I Finite size scaling of susceptibility peaks:

Peaks scale like: max(χ) ∼ lγ/ν , width (χ) ∼ l−1/ν , ∆TC (V ) ∼ l−1/ν

Onset only very close to the critical point?
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Constraints from imaginary chemical potential
[ de Forcrand, Philipsen, PRL105, 152001 (2010); Bonati et al, LAT2011; LAT2013 ]

Z(2)
1st triple

1st triple

1st

1st

                                     Crossover

Tricritical points

1st order

Roberge-Weiss plane

[ Cuteri et al, PRD 93, 054507 (2016) ]

I Follow the Z(2) line from the Roberge-Weiss transition point.

I Use the known tri-critical scaling.
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Exploring the transition in the chiral limit at Nf = 2

Constraints from imaginary chemical potential

Staggered fermions:

0 0.05 0.1 0.15 0.2 0.25

(am u,d)
2/5

-1

-0.75

-0.5

-0.25

0

(µ
/T

)2

first order

second order

B

region

region

[ Bonati et al, PRD 90, 074030 (2014) ]

Wilson fermions:
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[ Philipsen, Pinke, arXiv:1602.06129 ]

I Huge discrepancy ⇒ Large cutoff effects!

⇒ Continuum limit difficult but necessary!

I All-in-all: Strongly favours the 1st order scenario!
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Assessing the two scenarios – UA(1) symmetry

Essential for order of transition:
Strength of the anomalous breaking of the UA(1) symmetry:

[ Pisarki, Wilczek, PRD 29, 338 (1984), Butti et al, JHEP 0308, 029 (2003) ]

I If the breaking is strong:
Transition: Second order SU(2)× SU(2) ' O(4) universality

I If the breaking is weak:
Transition: Second order U(2)× U(2)→ U(2) universality

or first order

I If the symmetry is effectively restored:
Transition: Likely to be first order.

Possibility for looking at the strength of the breaking:
Look at degeneracies of correlation functions and screening masses in
pseudoscalar (P) and scalar channels (S).

⇒ Chiral extrapolation is mandatory!
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Exploring the transition in the chiral limit at Nf = 2

Screening masses and chiral symmetry

Cleanest method:

Use screening masses to investigate symmetry restoration.

Reason:
Spectral representation of partition function in terms of screening masses.

Channels for screening masses:

scalar (isovector) – S vector – V

pseudoscalar – P axial vector – A

Interesting symmetries:

I V
SUA(2)←→ A

I S
UA(1)←→ P

Degeneracy signals chiral symmetry restoration!
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Exploring the transition in the chiral limit at Nf = 2

Simulation and temperature scan setup
I Non-perturbatively O(a)-improved Wilson fermions

Wilson plaquette gauge action

I Algorithms: DD-HMC [ Lüscher (2004-2005), e.g. CPC 165, 199 (2005) ]

MP-HMC with DFL-SAP-GCR solver [ Marinkovic, Schäfer PoS LAT 2010, 031 (2010) ]

⇒ Good scaling properties with volume and quark masses!

I Scale setting, renormalisation and T = 0 subtractions: CLS input

Basic strategy:

I Use Nt = 16 for all scans.

I Use 3 different volumes: 323, 483 and 643.
(enables a finite volume scaling study; control FS effects)

I At least 3 different pion masses below mπ ≤300 MeV.
(ideally even below the physical point)

I We scan in β:
I First attempts: keep κ fixed (mud changes)
I Now: Line of constant physics (LCP) (mud fixed)

(conceptually much cleaner)
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Temperature scans
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Temperature scans
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Screening mass differences [ Scan details: BB et al, PoS LAT2013 ]

I C1: 16× 323 Lattice
LCP at mπ ≈300 MeV
(mud ≈ 16.0 MeV)

I Statistic: ∼300 configurations
48 source positions each

separated by 40 MDUs

I D1: 16× 323 Lattice
LCP at mπ ≈220 MeV
(mud ≈ 8.5 MeV)

I Statistic: ∼700 configurations
48 source positions each

separated by 20 MDUs
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Breaking of UA(1) at TC

Strength of breaking: Need a quantitative estimate!
Possibility: Compare to (mP −mS) at T = 0. (strong breaking)
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T = TC
linear chiral extrapolation
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T = 0 chiral extrapolated

I Phenomenological estimate from PDG masses.
(see details in upcomming paper).

I Effect of breaking at least factor of 5 reduced at mud = 0.
This is in qualitative agreement with recent results with overlap fermions.

[ Cossu et al, PRD87 (2013); Chiu et al, 1311.6220 ]
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Chiral transition: Conclusions

I The scaling analysis is inclonclusive!
⇒ Very expensive points at small mud are needed.

Moreover: No guarantee for success!

I As expected: SUA(2) is restored around TC .

I UA(1) symmetry effectively restored for T/TC & 1.25.
(agreement with hotQCD domain wall result)

[ Bazavov et al, PRD 86, 094503 (2012) ]

I Breaking becomes weaker for mud → 0.

At mud = 0 breaking at least by factor 5 reduced!

(might even vanish?)

I Our results speak in favour of a first order transition!

I Need to check possible systematic effects:
finite volume effects; quark mass difference; ...
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2. Finite-T spectroscopy and plasma properties

Anthony Francis and Harvey Meyer
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Finite-T spectroscopy and plasma properties

Spectral functions and Euclidean correlators
[ Review: Meyer, EPJA 47, 86 (2011) ]

Important for hydrodynamical treatment of the plasma: Transport coefficients

They are related to spectral functions (SPFs) via Kubo relations.

Spectral function ρ(ω, p;T ) in a given channel:

I Directly related to Wightman correlation functions and the retarded
correlator. (important for linear response)

I By analytic continuation formally related to the Euclidean correlator

πρ(ω, p;T ) = Im
(
GE (ωn → −i [ω + iε] , p;T )

)
I Formulation in terms of the temporal Euclidean correlator GE (τ, p;T ):

GE (τ, p;T ) =

∫ ∞
0

dωρ(ω, p;T ) K(ω,T , τ)

Here: GE (τ, p;T ) = 〈O1(τ)O2(0)〉T
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Finite-T spectroscopy and plasma properties

Spectral functions: physical significance
[ Review: Meyer, EPJA 47, 86 (2011) ]

I Low frequency region is related to hydrodynamics.
⇒ Kubo formulas!

Examples:

I Shear and bulk viscosity: (η) ↔ Tµν SPFs
I Electrical conductivity: (σ) ↔ vector channel SPF

I Also includes information about quasiparticles/resonances.
Show up as poles/peaks in ρ(ω, p;T ).

But: Extraction demands finding the solution of

GE (τ, p;T ) =

∫ ∞
0

dωρ(ω, p;T ) K(ω,T , τ)

⇒ Ill-posed problem!
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Finite-T spectroscopy and plasma properties

Vector correlator and SPF

Here: Focus on the vector current correlation function (at p = 0).

Gµν(τ,T ) =

∫ ∞
0

dω

2π
ρµν(ω,T )

cosh [ω (1/(2T )− τ)]

sinh (ω/2T )
.

Of particular relevance since:

I Is related to the electrical conductivity of the plasma.

Kubo formula:
σ(T )

T
=

Cem

6
lim
ω→0

ρii (ω,T )

ω T
.

I It can be used to investigate the behaviour of the ρ-meson when crossing
the transition.

I Gii (x ,T ) can be related to second order hydrodynamical coefficients
relevant for screening (or anti-screening) of the electromagnetic forces in
the plasma. [ BB, Francis, Meyer, PRD 89 3, 034506 (2014) ]
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Finite-T spectroscopy and plasma properties

Extraction of ρii(ω,T )

Two standard options to extract ρii (ω,T ):

I Maximum entropy method (MEM)

I Provides an accurate (model independent) answer if data is good
enough.

I Can lead to wrong results if this is not the case.
I In particular: Demands an exhaustive study of input model

dependence.

I Use a phenomenologically motivated ansatz for ρ(ω;T )

I Inherent model dependence.
⇒ The ansätze have to be justified!

I By comparing different ansätze one can get accurate results for
certain properties of the spectral function.

Here: We use the second method!

In addition: Backus-Gilbert method (introduced later)
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Finite-T spectroscopy and plasma properties

Temperature scans

New scan in the fixed scale approach:
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I Fixed β and mud ⇒ Vary temperature via Nt !

I T = 0 data available for a 128× 643 lattice from CLS.
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Our ansatz [ BB et al, PRD 93, 054510 (2016) (also: JHEP 1303, 100 (2013)) ]

Simultaneous fit to the “T = 0” and T > 0 ensembles (note: βT = aNt):

Ansatz T = 0:

ρii (ω;T ' 0)

2π
= aV δ(ω −mV ) +

3κ0

4π2
Θ(ω − Ω0)ω2 tanh

(ωβ0

4

)
Free parameters:

aV , κ0 Ω0: Perturbative threshold
mV : mass of ρ-meson

Ansatz T > 0:

ρii (ω;T )

2π
=

ω AT ΓT

π(Ω2
T + ω2)

+ aT δ(ω −mV )

+
3κ̃0

4π2
Θ(ω − ΩT )ω2 tanh

(ωβT
4

)
+

3κO

4π2
Θ(ω − Ω0)

1

ω2

ΓT : Breit-Wigner parameter aT = 0 or free (with aT > 0)
ΩT = 0 or Ω0 κO = 0 or free

κ̃0 =
[
κ0 + κ1

(
1− tanh

(
ω

Ω0η

)2)]
η and κ1 = 0 or free
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Our ansätze: Example for parameter settings
[ BB et al, PRD 93, 054510 (2016) (also: JHEP 1303, 100 (2013)) ]

ρii (ω; T )

2π
=

ω AT ΓT

π(Ω2
T

+ ω2)
+ aT δ(ω − mV ) +

3κ̃0

4π2
Θ(ω − ΩT )ω2 tanh

(ωβT
4

)
+

3κO

4π2
Θ(ω − Ω0)

1

ω2

Ansatz Nτ T/Tc aT κ1 ΩT κO

2b 24 0.80 free 0 Ω0 free
20 1.00 free free 0 0
16 1.25 free free 0 0
12 1.67 free free 0 0

2c 24 0.80 free 0 Ω0 free
20 1.00 free free 0 0
16 1.25 0 free 0 0
12 1.67 0 free 0 0

AT fixed by the sumrule: [ Bernecker, Meyer, EPJA 47, 148 (2011) ]∫ ∞
−∞

dω

ω

(
ρii (ω;T )− ρii (ω; 0)

)
= 0
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Finite-T spectroscopy and plasma properties

Spectral function from fits [ BB et al, PRD 93, 054510 (2016) ]

Fit 2c
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Finite-T spectroscopy and plasma properties

Spectral function from fits [ BB et al, PRD 93, 054510 (2016) ]

Fit 2b
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Finite-T spectroscopy and plasma properties

Results for ρ-meson and conductivity [ BB et al, PRD 93, 054510 (2016) ]

I ρ-meson:

Contribution of ρ-meson significantly
lowered at T & TC .

⇒ ρ-meson dissociates rapidly
in the transion region!

I At the same time:

Increase of spectral weight of the
transport contribution.

I From intercept at ω = 0:

See an increase of the electrical
conductivity!
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Finite-T spectroscopy and plasma properties

The Backus-Gilbert method [ BB et al, PRD 92, 094510 (2015); PRD 93, 054510 (2016) ]

Aim: Try to get as much local constraints on ρ as possible from correlator.

BGM: Provides this via filtered spectral function.

ρ̂(ω) = f (ω/T )

∫ ∞
0

dω′δ(ω, ω′)
ρ(ω′)

f (ω′/T )

δ(ω, ω′): resolution function

Using a linear ansatz for ρ̂:

ρ̂(ω) = f (ω/T )

Nt∑
i=1

gi (ω)G(τi )

gi (ω): coefficients for the desired frequency

⇒ δ(ω, ω′) =

Nt∑
i=1

gi (ω)K(τi , ω
′)

K(τi , ω) = f (ω/T ) cosh(ω(β/2−τ))
sinh(ωβ/2)

rescaled kernel
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Finite-T spectroscopy and plasma properties

The Backus-Gilbert method [ BB et al, PRD 92, 094510 (2015); PRD 93, 054510 (2016) ]

I Backus and Gilbert: [ Backus, Gilbert, Geophys.J.R.Astron.Soc. 16, 169 (1968) ]

Determine the coefficients gi (ω) via minimisation of the “width”

Γω =

∫ ∞
0

dω′(ω − ω′)2δ(ω, ω′) .

I f (ω/T ) chosen such that ρ/f as flat as possible.

Suitable choice here: f (x) = x2/(tanh(x/2))

I Resulting filtered spectral function ρ̂:

Averaged over region of support
of δ(ω, ω′).
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Finite-T spectroscopy and plasma properties

The Backus-Gilbert method [ BB et al, PRD 92, 094510 (2015); PRD 93, 054510 (2016) ]

Example with Mock data:
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Finite-T spectroscopy and plasma properties

Comparison to SPFs from Hohler and Rapp
[ BB et al, PRD 93, 054510 (2016) ]

Can be applied to the lattice data.

Most interestingly:
Provides a direct way to compare to
phenomenological SPFs.
(model independenty)

Filtered SPF:

ρ̂ =

∫ ∞
0

dω′δ(ω, ω′)ρ(ω′)

Here the SPFs from Hohler and Rapp

[ Hohler, Rapp, PLB 731, 103 (2014) ]

(obtained from QCD and Weinberg
sum rules)
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Antiscreening of electromagnetic currents
[ Anthony Francis and Harvey Meyer ]

At second order of hydrodynamical treatment additional coefficients appear:

κ` and κt

Interpretation:
Coulomb potential in plasma (QED or QCD) for static leptons (at long
distance):

VC (R) = e2
(

1 + e2 κ`
) Q1 Q2

4π R
e−Mel R

(last term: Debye screening; Mel: electromagn. screening mass)

Ampere force in plasma:

FA(R) = e2
(

1 + e2 κt

) I1 I2
4π R

⇒ Ampere force is enhanced in medium!

Constitutive em-current equation in hydrodynamics (2nd order):

(1 + τJ∂t)ej = −eD∇ρ+ σE + κte
2∇× B
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Finite-T spectroscopy and plasma properties

Extraction of κt and κ` from the correlator
[ BB, Francis, Meyer, PRD 89 3, 034506 (2014) ]

κt = −
∫ ∞

0
dx x2 ∆Gt(x ,T ) ∆Gt(x ,T ) = Gt(x ,T )− G(x , 0)

κ` = −
∫ ∞

0
dx x2 ∆G`(x ,T ) ∆G`(x ,T ) = G`(x ,T )− G(x , 0)

Difference does not need T = 0 input:

κ` − κt = −
∫ ∞

0
dx x2 ∆G`−t(x ,T ) ∆G`−t(x ,T ) = G`(x ,T )− Gt(x ,T )
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Results for κt and κ`
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I They are positive . . .
⇒ Anti-screening of the Ampère force in the plasma!

I . . . but rather small in magnitude!
⇒ Only tiny effect in the QGP!
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Chiral dynamics close to TC

What happens to the T = 0 real-time excitations of QCD at finite T?

Intuitive starting point: What is known about the pion at T 6= 0?

I Chiral perturbation theory around (T = 0,mud = 0):

I Pion quasiparticle persists.
[ Schenk, NPB 363, 97 (1991); PRD 47, 5138 (1993); Toublan, PRD 56, 5629 (1997) ]

I Question: Up to which temperatures is this expansion applicable?

I Goldstone theorem: mπ = 0 at mud = 0 for the chirally broken phase.

⇒ Can perform a chiral expansion around (T ,mud = 0).

[ Son, Stephanov, PRL 88, 202302 (2002); PRD 66, 076011 (2002) ]

I Quasiparticle persists (pole in retarded propagator at p = 0).

I Modified dispersion relation: ω2
p = u2(M2

P + p2)
u: ‘Pion velocity’

Can we somehow test this in lattice QCD?
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Exploring the pion dispersion relation [ Daniel Robaina ]

Two options:

I Extract the pseudoscalar screening mass MP and the Matsubara
frequency ωp from the x and t correlation functions of the pion.

⇒ Means that we need to extract again a spectral function of the
t-correlator in P and/or A channels.

I Can use a relation which connects u to static quantities:

Lattice estimates for u: [ BB et al, PRD 90, 054509 (2014) ]

u2
m = −

4m2
PCAC

M2
P

GP(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=Nt/2

uf sinh

(
uf

MPNt

2

)
=

f 2
PMP

2GA(Nt/2, 0)

Here: Nt temporal lattice extent; fP the T 6= 0 analogue of fπ

Prediction from χPT : uf /um = 1 ⇐ Can be used as a check.

Note: All quantities well defined for all T .

But: Interpretation depends on the reliablity of χPT .



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Finite-T spectroscopy and plasma properties

Results for the pion velocity

Measurements on scan C1:
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I Only one temperature (∼ 150 MeV) indicates validity of χPT.

I At that point u < 1 indicating a significant modification of the pion
dispersion relation.
⇒ Implies a violation of boost (Lorentz) invariance.

I Interpretation relies on the existence of a pion quasiparticle.
⇒ We have checked this via the SPF using MEM.



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Finite-T spectroscopy and plasma properties

Consistency with the pion pole at finite momentum
[ BB, Francis, Meyer, Robaina, PRD 92, 094510 (2015) ]

Best sensitivity for pion contribution in GA
00(τ, p).

Using an ansatz for the associated spectral function:

ρA(ω, p) = A1(p) sinh(ωβ/2)δ(ω − ωp) + A2(p)
1

8π2

(
1− exp(−ωβ)

)
Θ(ω − c)

Free parameters: A1, A2 and c (Perturbative threshold)

set: ωp = u
√

M2
P + p2 with measured values.

I Indeed: For small momenta very good description of data!

I Note: picture depends on validity of χPT.
⇒ Consistency checks have to be applied.
They show very good agreement with χPT!

I Can also test this with MEM or the BGM:
Also very good agrement with these fits!
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Summary
Exploring the transition in the chiral limit at Nf = 2:

I The order of the transition in the mud = 0 limit is the remaining
completely open question concerning the phase diagram at µ = 0.

I Our analysis of the strength of the breaking of the UA(1) symmetry
indicates a weak breaking in the chiral limit.
⇒ In favour of a first order phase transition!

Finite-T spectroscopy and plasma properties:

I Have been the first to resolve the dssociation of a light hadron across the
crossover from first principles.

I Have measured the electrical conductivity and second order hydrodynamic
coefficients κt and κ`.
(First computations with dynamical fermions.)

I Studied the fate of the pion and the reliability of χPT close to TC .
Pion quasiparticle persists at least up to ≈ 0.75TC .
Dispersion relation is significantly modified by the medium.
(⇒ breaking of Lorentz invariance).
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Perspectives

Exploring the transition in the chiral limit at Nf = 2:

I Simulate at lighter pion masses.
Physical pion mass (at a larger volume) is in preparation!

I Simulate the additional volumes.
(First results are already available.)

I Long term: Continuum limit?!

Finite-T spectroscopy and plasma properties:

I Gain better understanding of quasiparticles in the transition region.

I Extand the studies to smaller (physical) quark masses.

I Compute more complicated quantities.
(shear viscosity; bulk viscosity ...)

I Extend the study to Nf = 2 + 1.
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Thank you for your attention!
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