QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Bastian Brandt

ITP Goethe University Frankfurt

In collaboration with:

Anthony Francis (York University),

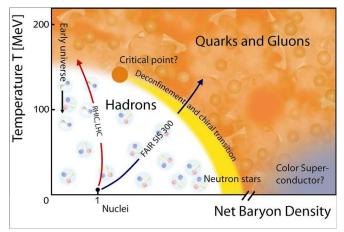
Harvey Meyer, Daniel Robaina, Hartmut Wittig (University of Mainz)

Owe Philipsen (Goethe University Frankfurt)

Benjamin Jäger (Swansea University)

23.06.2016

The conjectured QCD phase diagram

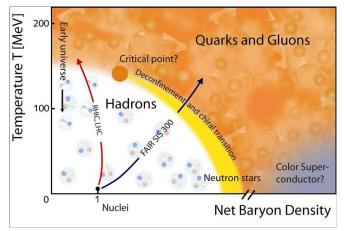


[Homepage of the CBM experiment, GSI (FAIR)]

QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions $\hfill Introduction$

The conjectured QCD phase diagram

However, the details of the phase diagram ...

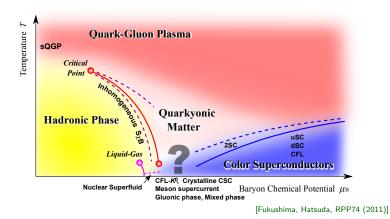


[Homepage of the CBM experiment, GSI (FAIR)]

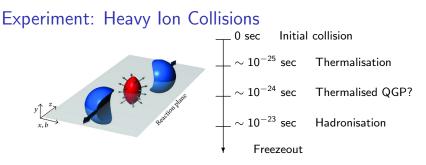
QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions $\hfill Introduction$

The conjectured QCD phase diagram

... might change, depending on whom you ask.



QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions $\hfill \label{eq:QCD}$ Introduction



- In some phase the plasma might be well described by hydrodynamics.
- The analysis of experiment in many parts relies on models
- Many effects can occur. (e.g. chiral magnetic effect) But: impact depends on plasma properties of QCD.
- \Rightarrow First principles measurements of plasma properties are mandatory!

Lattice QCD is the prefered tool!

QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions $\hfill \label{eq:QCD}$ Introduction

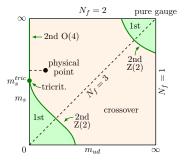
Contents

- 1. Exploring the transition in the chiral limit at $N_f = 2$
 - Phase diagram at $\mu = 0$
 - Critical scaling for $m_{ud} \rightarrow 0$ Why it is not conclusive.
 - Strength of the $U_A(1)$ symmetry breaking
- 2. Finite-T spectroscopy and plasma properties
 - Dissociation of the ρ -meson
 - Electrical conductivity
 - Backus-Gilbert method (comparison to phenomenological spectral functions)
 - Antiscreening of the Ampére force
 - Pion properties close to T_C
- 3. Summary and Perspectives

1. Exploring the transition in the chiral limit at $N_f = 2$

Directly accessible: Zero density ($\mu = 0$)

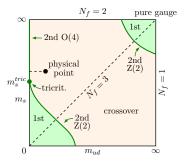
Enlarged parameter space relevant for the QCD phase diagram:



- The charm quark is to heavy to influence the transition properties. (might affect plasma properties above T_C)
- Isospin breaking effects also won't effect the order much.

Directly accessible: Zero density ($\mu = 0$)

Enlarged parameter space relevant for the QCD phase diagram:

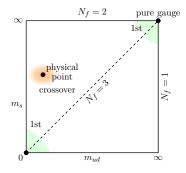


Common believe:

The features of the Columbia plot are well known!

However: This is not entirely true!

Known facts



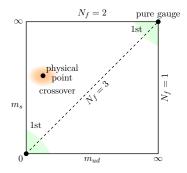
SU(3) chiral limit:

- First order phase transition
 [Pisarski, Wilczek, PRD 29, 338 (1984)]
- Order parameter: Chiral condensate
- Associated broken symmetry: SU_V(3) × SU_A(3)

Pure gauge theory:

- First order phase transition
 [Yaffe, Svetitsky, PRD 26, 963 (1982)]
- Order parameter: Polyakov loop
- Associated broken symmetry: Center symmetry

Known facts



Physical point: Crossover [Aoki *et al*, Nature 444, 675 (2006)]

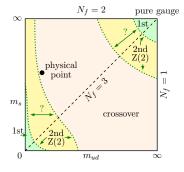
Staggered fermions: (continuum limit) T_C ≈ 150 − 160 MeV

> [Borsanyi et al, JHEP 1009, 073 (2010)] [Bazavov et al, PRD 85, 054503 (2012)]

• Domain wall fermions: (no continuum limit) $T_C \approx 155(1)(8)$ MeV

[Bhattacharya et al, PRL113, 082001 (2014)]

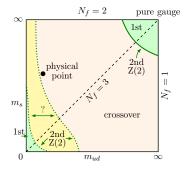
Resulting phase diagram



- Border crossover/1st order: Z(2) critical lines
- Positions/Shape: Has to be clarified!
- Particularly relevant: Two possible scenarios for the N_f = 2 transition in the chiral limit!
- \Rightarrow Let's see what the lattice says!

Here: Focus on the chiral critical line!

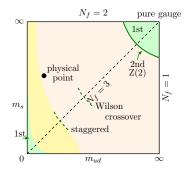
Resulting phase diagram



- Border crossover/1st order: Z(2) critical lines
- Positions/Shape: Has to be clarified!
- Particularly relevant: Two possible scenarios for the N_f = 2 transition in the chiral limit!
- \Rightarrow Let's see what the lattice says!

Here: Focus on the chiral critical line!

Chiral critical line: $N_f = 3$ region - $N_t = 4$



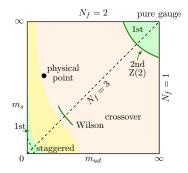
Staggered fermions: $N_f = 3$ critical point [Karsch et al, PLB 520, 41 (2001)] [de Forcrand, Philipsen, NPB 673, 170 (2003)] Nf=2+1 0.3 0.25 0.2 Ъ, 0.15 0.1 0.05 0 0.01 0.02 0.03 0.04 am_{u.d}

[de Forcrand, Philipsen, JHEP 0701, 077 (2007)]

Wilson fermions:

 $m^{
m c}_{uds}pprox 36~m^{
m phys}_{ud}$ $N_t=4$ out of the scaling region! [Jin, PRD 91, 014508 (2015)]

Chiral critical line: $N_f = 3$ region - $N_t > 4$



Staggered fermions: 1st order region shrinks [de Forcrand *et al*, PoS LAT 2007, 178] [Endrődi *et al*, PoS LAT 2007, 182]

$$m_{uds}^c(N_t=6) \approx m_{uds}^c(N_t=4)/5$$

Newest upper bound $N_t > 6$:

 $m_{uds}^c < 0.1 \, m_{ud}^{
m phys}$

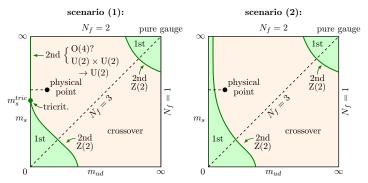
[Ding et al, PoS LAT 2011, 191]

Wilson fermions: Continuum from $N_t = 6$ and 8

$$\Rightarrow$$
 $m_{uds}^c \approx 4 m_{ud}^{\rm phys}$

[Jin, PRD 91, 014508 (2015)]

Chiral critical line: $m_s > m_{ud}$



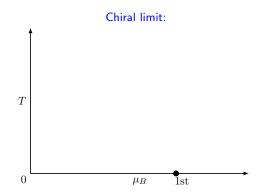
Two possible scenarios:

It has to be true phase transition.

But it can be of first or second order!

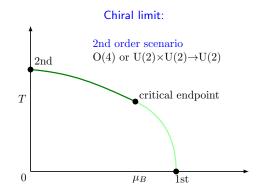
[Butti et al, JHEP 0308, 029 (2003); Pelisseto, Vicari, 1309.5446]

Impact on finite density scenarios $N_f = 2$



Expect first order transition at T = 0? [review: Fukushima, Hatsuda, RPP74 (2011)]

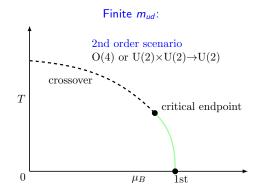
Impact on finite density scenarios $N_f = 2$



• Expect first order transition at T = 0? [review: Fukushima, Hatsuda, RPP74 (2011)]

Critical endpoint exists!

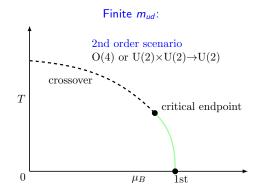
Impact on finite density scenarios $N_f = 2$



• Expect first order transition at T = 0? [review: Fukushima, Hatsuda, RPP74 (2011)]

Critical endpoint exists!

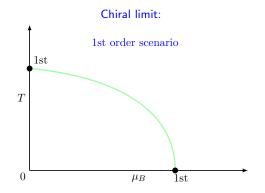
Impact on finite density scenarios $N_f = 2$



Expect first order transition at T = 0? [review: Fukushima, Hatsuda, RPP74 (2011)]

Finite strange quark mass is not expected to change much!

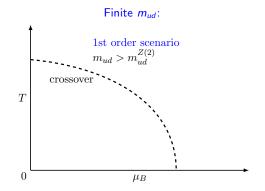
Impact on finite density scenarios $N_f = 2$



• Expect first order transition at T = 0? [review: Fukushima, Hatsuda, RPP74 (2011)]

No critical endpoint!

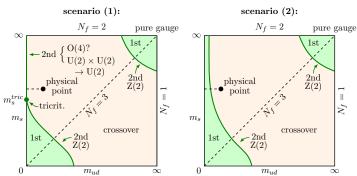
Impact on finite density scenarios $N_f = 2$



• Expect first order transition at T = 0? [review: Fukushima, Hatsuda, RPP74 (2011)]

No critical endpoint!

Assessing the two scenarios - Our choice



Simulate at $N_f = 2$:

Simulations are less expensive.

Can use Wilson fermions on large lattices using the available fast algorithms and the T = 0 input from CLS.

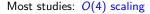
Assessing the two scenarios - Scaling

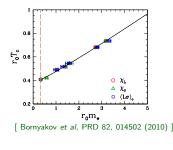
- ► Cannot simulate directly in (or very close to) the chiral limit. Simulate at larger m_{ud} ; look for critical scaling for $m_{ud} \rightarrow 0$
- What type of scaling can be expected in the two cases?
 - P 2nd order: standard O(4) or U(2) × U(2) → U(2) scaling order parameter: Chiral condensate external field: h = m_{ud}
 - Ist order: Z(2) scaling order parameter: ??? external feld: ??? maybe h = m_{ud} - m^{cr}_{cd}?
- How close to $m_{ud} = 0$ is necessary?
- Breaking of chiral symmetry due to lattice:
 Scaling laws will only be correct in the continuum limit!
 Need to be close enough to the continuum (large N_t)!
- There is a number of studies but no conclusive result! (contradicting results for staggered; no control over systematics for Wilson)

Scaling of the transition temperature

Scaling of the critical temperature with the external field:

$$T_{C}(h) = T_{C}(0) \left[1 + C h^{1/(\delta \beta)}\right] + sv$$

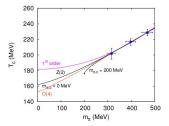




- Large pion masses
- Control over systematic effects?

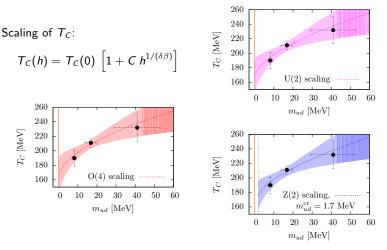
Difficult to distinguish:

• U(2):
$$\delta \beta \approx 1.8$$



[tmfT collaboration, PRD 87, 074508 (2013)]

Scaling of the transition temperature



Even with one order of magnitude smaller error bars no conlusions possible!

Other types of scaling

Scaling of the order parameter (chiral condensate):

$$ig\langle ar{\psi}\psi
angle \sim h^{1/\delta} \, \Psi \left(z, \; h
ight) \quad ext{with} \quad z = rac{ au}{h^{1/(\delta\;eta)}}$$

 Ψ : universal scaling function

Problem: Ψ is known for O(4) only.

So far simulations show consistency with O(4) scaling. But $U(2) \times U(2) \rightarrow U(2)$ and Z(2) scaling might be similar?

Scaling of the Binder cumulant:

Very powerful tool!

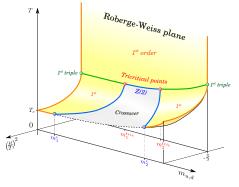
However: So far no one has seen the onset of this scaling!

Finite size scaling of susceptibility peaks:

Peaks scale like: $\max(\chi) \sim l^{\gamma/\nu}$, width $(\chi) \sim l^{-1/\nu}$, $\Delta T_C(V) \sim l^{-1/\nu}$ Onset only very close to the critical point?

Constraints from imaginary chemical potential

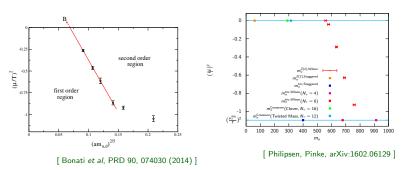
[de Forcrand, Philipsen, PRL105, 152001 (2010); Bonati et al, LAT2011; LAT2013]



[Cuteri et al, PRD 93, 054507 (2016)]

- ▶ Follow the Z(2) line from the Roberge-Weiss transition point.
- Use the known tri-critical scaling.

Constraints from imaginary chemical potential



Wilson fermions:

Staggered fermions:

- ► Huge discrepancy ⇒ Large cutoff effects!
 - ⇒ Continuum limit difficult but necessary!
- All-in-all: Strongly favours the 1st order scenario!

Assessing the two scenarios – $U_A(1)$ symmetry

Essential for order of transition:

Strength of the anomalous breaking of the $U_A(1)$ symmetry:

[Pisarki, Wilczek, PRD 29, 338 (1984), Butti et al, JHEP 0308, 029 (2003)]

- ► If the breaking is strong: Transition: Second order SU(2) × SU(2) ≃ O(4) universality
- ▶ If the breaking is weak: Transition: Second order $U(2) \times U(2) \rightarrow U(2)$ universality or first order
- If the symmetry is effectively restored: Transition: Likely to be first order.

Possibility for looking at the strength of the breaking: Look at degeneracies of correlation functions and screening masses in pseudoscalar (P) and scalar channels (S).

 \Rightarrow Chiral extrapolation is mandatory!

Screening masses and chiral symmetry

Cleanest method:

Use screening masses to investigate symmetry restoration.

Reason:

Spectral representation of partition function in terms of screening masses.

Channels for screening masses:

scalar (isovector)	-	S	vector	-	V
pseudoscalar	_	Р	axial vector	_	Α

Interesting symmetries:

 $V \stackrel{SU_A(2)}{\longleftrightarrow} A \\ S \stackrel{U_A(1)}{\longleftrightarrow} P$

Degeneracy signals chiral symmetry restoration!

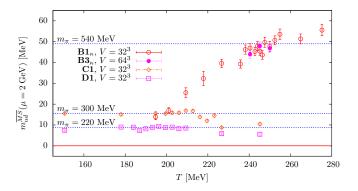
Simulation and temperature scan setup

- Non-perturbatively O(a)-improved Wilson fermions
 Wilson plaquette gauge action
- Algorithms: DD-HMC [Lüscher (2004-2005), e.g. CPC 165, 199 (2005)]
 MP-HMC with DFL-SAP-GCR solver [Marinkovic, Schäfer Pos LAT 2010, 031 (2010)]
 - \Rightarrow Good scaling properties with volume and quark masses!
- ▶ Scale setting, renormalisation and T = 0 subtractions: CLS input

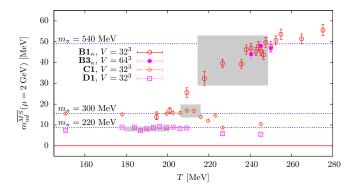
Basic strategy:

- Use $N_t = 16$ for all scans.
- Use 3 different volumes: 32³, 48³ and 64³.
 (enables a finite volume scaling study; control FS effects)
- At least 3 different pion masses below m_π ≤300 MeV. (ideally even below the physical point)
- We scan in β :
 - First attempts: keep κ fixed (m_{ud} changes)
 - Now: Line of constant physics (LCP) (m_{ud} fixed) (conceptually much cleaner)

Temperature scans



Temperature scans



Transition temperatures:

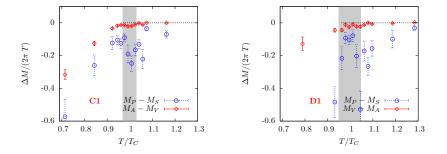
Defined via peak in the susceptibility of the chiral condensate.

Screening mass differences

- C1: 16×32^3 Lattice LCP at $m_{\pi} \approx 300$ MeV ($m_{ud} \approx 16.0$ MeV)
- Statistic: ~300 configurations 48 source positions each separated by 40 MDUs

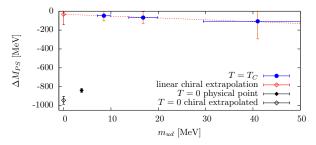
[Scan details: BB et al, PoS LAT2013]

- ► D1: 16×32^3 Lattice LCP at $m_{\pi} \approx 220$ MeV $(m_{ud} \approx 8.5 \text{ MeV})$
- Statistic: ~700 configurations 48 source positions each separated by 20 MDUs



Breaking of $U_A(1)$ at T_C

Strength of breaking: Need a quantitative estimate! Possibility: Compare to $(m_P - m_S)$ at T = 0. (strong breaking)



- Phenomenological estimate from PDG masses. (see details in upcomming paper).
- Effect of breaking at least factor of 5 reduced at $m_{ud} = 0$. This is in qualitative agreement with recent results with overlap fermions.

[Cossu et al, PRD87 (2013); Chiu et al, 1311.6220]

QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions \Box Exploring the transition in the chiral limit at $N_f = 2$

Chiral transition: Conclusions

- The scaling analysis is inclonclusive!
 - \Rightarrow Very expensive points at small m_{ud} are needed.

Moreover: No guarantee for success!

- As expected: $SU_A(2)$ is restored around T_C .
- ► $U_A(1)$ symmetry effectively restored for $T/T_C \gtrsim 1.25$. (agreement with hotQCD domain wall result)

```
[Bazavov et al, PRD 86, 094503 (2012)]
```

• Breaking becomes weaker for $m_{ud} \rightarrow 0$.

At $m_{ud} = 0$ breaking at least by factor 5 reduced! (might even vanish?)

- Our results speak in favour of a first order transition!
- Need to check possible systematic effects: finite volume effects; quark mass difference; ...

 QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

 \square Finite-T spectroscopy and plasma properties

2. Finite-T spectroscopy and plasma properties

Anthony Francis and Harvey Meyer

Spectral functions and Euclidean correlators

```
[ Review: Meyer, EPJA 47, 86 (2011) ]
```

Important for hydrodynamical treatment of the plasma: Transport coefficients They are related to spectral functions (SPFs) via Kubo relations.

Spectral function $\rho(\omega, \mathbf{p}; T)$ in a given channel:

- Directly related to Wightman correlation functions and the retarded correlator. (important for linear response)
- > By analytic continuation formally related to the Euclidean correlator

$$\pi
ho(\omega, \mathbf{p}; T) = \operatorname{Im} \left(G_{E}(\omega_{n} \rightarrow -i[\omega + i\epsilon], \mathbf{p}; T) \right)$$

Formulation in terms of the temporal Euclidean correlator $G_E(\tau, \mathbf{p}; T)$:

$${\it G_E}(au,{f p};\,T)=\int_0^\infty d\omega
ho(\omega,{f p};\,T)\;{\it K}(\omega,T, au)$$

Here: $G_E(\tau, \mathbf{p}; T) = \langle O_1(\tau) O_2(0) \rangle_T$

Spectral functions: physical significance

[Review: Meyer, EPJA 47, 86 (2011)]

- Low frequency region is related to hydrodynamics.
 - \Rightarrow Kubo formulas!

Examples:

- Shear and bulk viscosity: $(\eta) \leftrightarrow T_{\mu\nu}$ SPFs
- Electrical conductivity: $(\sigma) \leftrightarrow$ vector channel SPF
- Also includes information about quasiparticles/resonances. Show up as poles/peaks in $\rho(\omega, \mathbf{p}; T)$.

But: Extraction demands finding the solution of

$${\it G_E}(au,{f p};\,{\it T}) = \int_0^\infty d\omega
ho(\omega,{f p};\,{\it T})\;{\it K}(\omega,{\it T}, au)$$

⇒ III-posed problem!

Vector correlator and SPF

Here: Focus on the vector current correlation function (at $\mathbf{p} = 0$).

$$G_{\mu\nu}(\tau,T) = \int_0^\infty \frac{d\omega}{2\pi} \ \rho_{\mu\nu}(\omega,T) \ \frac{\cosh\left[\omega\left(1/(2T)-\tau\right)\right]}{\sinh\left(\omega/2T\right)}$$

Of particular relevance since:

▶ Is related to the electrical conductivity of the plasma.

Kubo formula:
$$rac{\sigma(T)}{T} = rac{\mathcal{C}_{ ext{em}}}{6} \lim_{\omega o 0} rac{
ho_{ii}(\omega,T)}{\omega T}.$$

- It can be used to investigate the behaviour of the ρ-meson when crossing the transition.
- G_{ii}(x, T) can be related to second order hydrodynamical coefficients relevant for screening (or anti-screening) of the electromagnetic forces in the plasma.
 [BB, Francis, Meyer, PRD 89 3, 034506 (2014)]

Extraction of $\rho_{ii}(\omega, T)$

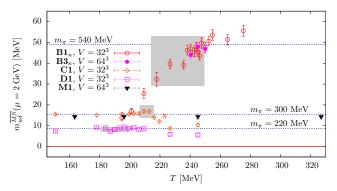
Two standard options to extract $\rho_{ii}(\omega, T)$:

- Maximum entropy method (MEM)
 - Provides an accurate (model independent) answer if data is good enough.
 - Can lead to wrong results if this is not the case.
 - In particular: Demands an exhaustive study of input model dependence.
- Use a phenomenologically motivated ansatz for $\rho(\omega; T)$
 - Inherent model dependence.
 - \Rightarrow The ansätze have to be justified!
 - By comparing different ansätze one can get accurate results for certain properties of the spectral function.

Here: We use the second method!

In addition: Backus-Gilbert method (introduced later)

Temperature scans



New scan in the fixed scale approach:

Fixed β and $m_{ud} \Rightarrow$ Vary temperature via N_t !

• T = 0 data available for a 128×64^3 lattice from CLS.

Our ansatz [BB et al, PRD 93, 054510 (2016) (also: JHEP 1303, 100 (2013))]

Simultaneous fit to the "T = 0" and T > 0 ensembles (note: $\beta_T = aN_t$): Ansatz T = 0:

$$\frac{\rho_{ii}(\omega; T \simeq 0)}{2\pi} = a_V \delta(\omega - m_V) + \frac{3\kappa_0}{4\pi^2} \Theta(\omega - \Omega_0) \omega^2 \tanh\left(\frac{\omega\beta_0}{4}\right)$$

Free parameters: $\begin{array}{c} a_{V}, \kappa_{0} \\ m_{V}: \text{ mass of } \rho \text{-meson} \end{array}$ $\Omega_{0}:$ Perturbative threshold

Ansatz T > 0:

$$\frac{\rho_{ii}(\omega;T)}{2\pi} = \frac{\omega A_T \Gamma_T}{\pi (\Omega_T^2 + \omega^2)} + a_T \delta(\omega - m_V) \\ + \frac{3\tilde{\kappa}_0}{4\pi^2} \Theta(\omega - \Omega_T) \omega^2 \tanh\left(\frac{\omega\beta_T}{4}\right) + \frac{3\kappa_0}{4\pi^2} \Theta(\omega - \Omega_0) \frac{1}{\omega^2}$$

$$\begin{split} & \Gamma_{T} \colon \text{Breit-Wigner parameter} \\ & \Omega_{T} = 0 \text{ or } \Omega_{0} \\ & \tilde{\kappa}_{0} = \left[\kappa_{0} + \kappa_{1} \left(1 - \tanh\left(\frac{\omega}{\Omega_{0}\eta}\right)^{2} \right) \right] \end{split}$$

 $a_T = 0$ or free (with $a_T > 0$) $\kappa_O = 0$ or free η and $\kappa_1 = 0$ or free

Our ansätze: Example for parameter settings

[BB et al, PRD 93, 054510 (2016) (also: JHEP 1303, 100 (2013))]

$$\frac{\rho_{i\bar{i}}(\omega;T)}{2\pi} = \frac{\omega A_T \Gamma_T}{\pi (\Omega_T^2 + \omega^2)} + a_T \delta(\omega - m_V) + \frac{3\tilde{\kappa}_0}{4\pi^2} \Theta(\omega - \Omega_T) \omega^2 \tanh\left(\frac{\omega\beta_T}{4}\right) + \frac{3\kappa_0}{4\pi^2} \Theta(\omega - \Omega_0) \frac{1}{\omega^2} + \frac{3\kappa_0}{4\pi^2} +$$

Ansatz	$N_{ au}$	T/T_c	а _Т	κ_1	Ω_T	κo
2b	24	0.80	free	0	Ω_0	free
	20	1.00	free	free	0	0
	16	1.25	free	free	0	0
	12	1.67	free	free	0	0
2c	24	0.80	free	0	Ω_0	free
	20	1.00	free	free	0	0
	16	1.25	0	free	0	0
	12	1.67	0	free	0	0

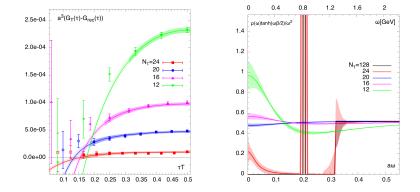
 A_T fixed by the sumrule:

[Bernecker, Meyer, EPJA 47, 148 (2011)]

$$\int_{-\infty}^{\infty} \frac{d\omega}{\omega} (\rho_{ii}(\omega; T) - \rho_{ii}(\omega; 0)) = 0$$

Spectral function from fits

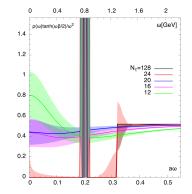
[BB et al, PRD 93, 054510 (2016)]



Fit 2c

Spectral function from fits

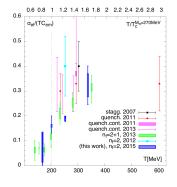
[BB et al, PRD 93, 054510 (2016)]



Fit 2b

Results for ρ -meson and conductivity

[BB et al, PRD 93, 054510 (2016)]



\blacktriangleright ρ -meson:

Contribution of ρ -meson significantly lowered at $T \gtrsim T_C$.

- $\Rightarrow \rho \text{-meson dissociates rapidly} \\ \text{in the transion region!}$
- At the same time:

Increase of spectral weight of the transport contribution.

From intercept at $\omega = 0$:

See an increase of the electrical conductivity!

The Backus-Gilbert method [BB *et al*, PRD 92, 094510 (2015); PRD 93, 054510 (2016)] Aim: Try to get as much local constraints on ρ as possible from correlator.

BGM: Provides this via filtered spectral function.

$$\hat{\rho}(\omega) = f(\omega/T) \int_0^\infty d\omega' \delta(\omega, \omega') \frac{\rho(\omega')}{f(\omega'/T)}$$

 $\delta(\omega, \omega')$: resolution function

Using a linear ansatz for $\hat{\rho}:$

$$\hat{\rho}(\omega) = f(\omega/T) \sum_{i=1}^{N_t} g_i(\omega) G(\tau_i)$$

 $g_i(\omega)$: coefficients for the desired frequency

$$\Rightarrow \quad \delta(\omega,\omega') = \sum_{i=1}^{N_t} g_i(\omega) \mathcal{K}(\tau_i,\omega')$$

 $K(\tau_i, \omega) = f(\omega/T) \frac{\cosh(\omega(\beta/2-\tau))}{\sinh(\omega\beta/2)}$ rescaled kernel

The Backus-Gilbert method

[BB et al, PRD 92, 094510 (2015); PRD 93, 054510 (2016)]

Backus and Gilbert: [Backus, Gilbert, Geophys.J.R.Astron.Soc. 16, 169 (1968)]

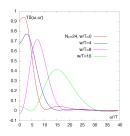
Determine the coefficients $g_i(\omega)$ via minimisation of the "width"

$$\Gamma_\omega = \int_0^\infty d\omega' (\omega-\omega')^2 \delta(\omega,\omega')\,.$$

f(ω/T) chosen such that ρ/f as flat as possible.
 Suitable choice here: f(x) = x²/(tanh(x/2))

• Resulting filtered spectral function $\hat{\rho}$:

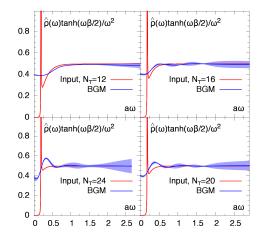
Averaged over region of support of $\delta(\omega, \omega')$.



The Backus-Gilbert method

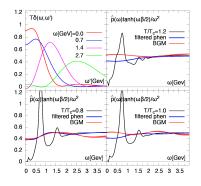
[BB et al, PRD 92, 094510 (2015); PRD 93, 054510 (2016)]

Example with Mock data:



Comparison to SPFs from Hohler and Rapp

[BB et al, PRD 93, 054510 (2016)]



Can be applied to the lattice data.

Most interestingly: Provides a direct way to compare to phenomenological SPFs. (model independenty)

Filtered SPF:

$$\hat{
ho} = \int_0^\infty d\omega' \delta(\omega,\omega')
ho(\omega')$$

Here the SPFs from Hohler and Rapp

[Hohler, Rapp, PLB 731, 103 (2014)]

(obtained from QCD and Weinberg sum rules)

Antiscreening of electromagnetic currents

[Anthony Francis and Harvey Meyer]

At second order of hydrodynamical treatment additional coefficients appear:

κ_{ℓ} and κ_{t}

Interpretation:

Coulomb potential in plasma (QED or QCD) for static leptons (at long distance):

$$V_C(R) = e^2 \left(1 + e^2 \kappa_\ell\right) \; rac{Q_1 \; Q_2}{4\pi \; R} \; e^{-M_{
m el} \; R}$$

(last term: Debye screening; $M_{\rm el}$: electromagn. screening mass) Ampere force in plasma:

$$F_A(R) = e^2 \left(1 + e^2 \kappa_t\right) \frac{I_1 I_2}{4\pi R}$$

 \Rightarrow Ampere force is enhanced in medium!

Constitutive em-current equation in hydrodynamics (2nd order):

$$(1 + \tau_J \partial_t) e \mathbf{j} = -e D \nabla \rho + \sigma \mathbf{E} + \kappa_t e^2 \nabla \times \mathbf{B}$$

Extraction of κ_t and κ_ℓ from the correlator

0.002 ax2AG(x AT) 0.001 -0.001 -0.002 -0.003 -0.004 12 -0.005 -0.006 x₃/a 0 5 10 15 20 25 30

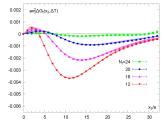
$$\kappa_t = -\int_0^\infty dx \, x^2 \, \Delta G_t(x, T)$$

$$\kappa_\ell = -\int_0^\infty dx \, x^2 \, \Delta G_\ell(x, T)$$

Difference does not need T = 0 input:

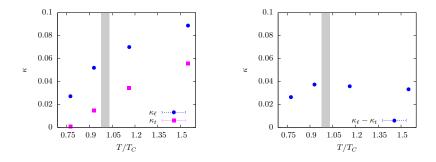
$$\kappa_{\ell} - \kappa_t = -\int_0^\infty dx \ x^2 \ \Delta G_{\ell-t}(x,T) \quad \Delta G_{\ell-t}(x,T) = G_{\ell}(x,T) - G_t(x,T)$$

5 (2014)]



$$\Delta G_t(x, T) = G_t(x, T) - G(x, 0)$$
$$\Delta G_\ell(x, T) = G_\ell(x, T) - G(x, 0)$$

Results for κ_t and κ_ℓ



- They are positive ...
 - \Rightarrow Anti-screening of the Ampère force in the plasma!
- ... but rather small in magnitude!
 - \Rightarrow Only tiny effect in the QGP!

Chiral dynamics close to T_C

What happens to the T = 0 real-time excitations of QCD at finite T?

Intuitive starting point: What is known about the pion at $T \neq 0$?

- Chiral perturbation theory around $(T = 0, m_{ud} = 0)$:
 - Pion quasiparticle persists.

[Schenk, NPB 363, 97 (1991); PRD 47, 5138 (1993); Toublan, PRD 56, 5629 (1997)]

- Question: Up to which temperatures is this expansion applicable?
- Goldstone theorem: $m_{\pi} = 0$ at $m_{ud} = 0$ for the chirally broken phase.
 - $\Rightarrow \quad \text{Can perform a chiral expansion around } (T, m_{ud} = 0).$

[Son, Stephanov, PRL 88, 202302 (2002); PRD 66, 076011 (2002)]

- Quasiparticle persists (pole in retarded propagator at $\mathbf{p} = 0$).
- Modified dispersion relation: ω_p² = u²(M_P² + p²)
 u: 'Pion velocity'

Can we somehow test this in lattice QCD?

Exploring the pion dispersion relation

[Daniel Robaina]

Two options:

- Extract the pseudoscalar screening mass M_P and the Matsubara frequency ω_p from the x and t correlation functions of the pion.
 - $\Rightarrow \quad \text{Means that we need to extract again a spectral function of the} \\ t\text{-correlator in } P \text{ and/or } A \text{ channels.}$
- Can use a relation which connects *u* to static quantities:

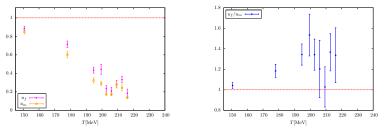
Lattice estimates for u: [BB et al, PRD 90, 054509 (2014)]

$$u_m^2 = -\frac{4m_{PCAC}^2}{M_P^2} \left. \frac{G_P(x_0, \mathbf{0})}{G_A(x_0, \mathbf{0})} \right|_{x_0 = N_t/2} \qquad u_f \sinh\left(u_f \frac{M_P N_t}{2}\right) = \frac{f_P^2 M_P}{2G_A(N_t/2, \mathbf{0})}$$

Here: N_t temporal lattice extent; f_P the $T \neq 0$ analogue of f_{π} Prediction from χPT : $u_f/u_m = 1 \iff Can$ be used as a check.

Note: All quantities well defined for all *T*. But: Interpretation depends on the reliablity of χPT .

Results for the pion velocity



Measurements on scan C1:

- Only one temperature (\sim 150 MeV) indicates validity of χ PT.
- At that point u < 1 indicating a significant modification of the pion dispersion relation.
 - \Rightarrow Implies a violation of boost (Lorentz) invariance.
- Interpretation relies on the existence of a pion quasiparticle.
 - \Rightarrow We have checked this via the SPF using MEM.

Consistency with the pion pole at finite momentum

[BB, Francis, Meyer, Robaina, PRD 92, 094510 (2015)]

Best sensitivity for pion contribution in $G_{00}^{A}(\tau, \mathbf{p})$.

Using an ansatz for the associated spectral function:

$$\rho^{A}(\omega,\mathbf{p}) = A_{1}(\mathbf{p})\sinh(\omega\beta/2)\delta(\omega-\omega_{\mathbf{p}}) + A_{2}(\mathbf{p})\frac{1}{8\pi^{2}}(1-\exp(-\omega\beta))\Theta(\omega-c)$$

Free parameters: A_1 , A_2 and c (Perturbative threshold) set: $\omega_{\mathbf{p}} = u \sqrt{M_P^2 + \mathbf{p}^2}$ with measured values.

- Indeed: For small momenta very good description of data!
- ► Note: picture depends on validity of \(\chi PT\). ⇒ Consistency checks have to be applied. They show very good agreement with \(\chi PT\)!
- Can also test this with MEM or the BGM: Also very good agreement with these fits!

Summary

Exploring the transition in the chiral limit at $N_f = 2$:

- The order of the transition in the m_{ud} = 0 limit is the remaining completely open question concerning the phase diagram at µ = 0.
- ▶ Our analysis of the strength of the breaking of the U_A(1) symmetry indicates a weak breaking in the chiral limit.
 ⇒ In favour of a first order phase transition!
- Finite-T spectroscopy and plasma properties:
 - Have been the first to resolve the dssociation of a light hadron across the crossover from first principles.
 - Have measured the electrical conductivity and second order hydrodynamic coefficients κ_t and κ_ℓ.
 (First computations with dynamical fermions.)
 - Studied the fate of the pion and the reliability of χ PT close to T_C . Pion quasiparticle persists at least up to $\approx 0.75 T_C$. Dispersion relation is significantly modified by the medium. (\Rightarrow breaking of Lorentz invariance).

Perspectives

Exploring the transition in the chiral limit at $N_f = 2$:

- Simulate at lighter pion masses.
 Physical pion mass (at a larger volume) is in preparation!
- Simulate the additional volumes. (First results are already available.)
- Long term: Continuum limit?!

Finite-T spectroscopy and plasma properties:

- Gain better understanding of quasiparticles in the transition region.
- Extand the studies to smaller (physical) quark masses.
- Compute more complicated quantities. (shear viscosity; bulk viscosity ...)
- Extend the study to $N_f = 2 + 1$.

QCD thermodynamics and finite temperature spectroscopy with two flavours of Wilson fermions

Thank you for your attention!