The Constant-Sound-Speed parameterization of the quark matter EoS

Prof. Mark Alford Washington University in St. Louis

Alford, Han, Prakash, arXiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà, arXiv:1501.07902 Ranea-Sandoval, Han, Orsaria, Contrera, Weber, Alford, arXiv:1512.09183

Schematic QCD phase diagram

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP review) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

Signatures of quark matter in compact stars

Observable $\leftarrow \frac{\text{Microphysical properties}}{(\text{and neutron star structure})} \leftarrow \text{Phases of dense matter}$

	Property	Nuclear phase	Quark phase
mass radius	ean of state $\varepsilon(n)$	known	unknown;
mass, raulus	equi or state $\varepsilon(p)$	up to $\sim {\it n}_{ m sat}$	many models
spindown	bulk viscosity	Depends on	Depends on
(spin freq, age)	shear viscosity	phase:	phase:
		npe	unpaired
cooling	heat capacity	npe, μ	CFL
(town one)	neutrino emissivity	$n p e, \Lambda, \Sigma^{-}$	CFL-K ⁰
(temp, age)	thermal cond.	n superfluid	2SC
		<i>p</i> supercond	CSL
glitches	shear modulus	π condensate	LOFF
(superfluid,	vortex pinning	K condensate	1SC
crystal)	energy	I	

Constraining QM EoS by observing M(R)

There is lots of literature about specific models of quark matter, e.g.

- MIT Bag Model; (Alford, Braby, Paris, Reddy, nucl-th/0411016)
- NJL models; (Paoli, Menezes, arXiv:1009.2906; Bonanno, Sedrakian, arXiv:1108.0559)
- PNJL models (Blaschke et. al, arXiv:1302.6275; Orsaria et. al.; arXiv:1212.4213)
- hadron-quark NL σ model (Negreiros et. al., arXiv:1006.0380)
- 2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062)
- MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)

We need a model-independent parameterization of the quark matter EoS:

- framework for relating different models to each other
- observational constraints can be expressed in universal terms

CSS: a fairly generic QM EoS

Model-independent parameterization with

- Sharp 1st-order transition
- Constant [density-indp] $\varepsilon(p) = \varepsilon_{\text{trans}} + \Delta \varepsilon + c_{\text{QM}}^{-2}(p p_{\text{trans}})$ Speed of Sound (CSS)

Hybrid star M(R)

Hybrid star branch in M(R) relation has 4 typical forms

CSS "Phase diagram" of hybrid star M(R)

(Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072) Disconnected branch exists in regions D and B.

Sensitivity to NM EoS and $c_{\rm QM}^2$

• NM EoS (HLPS=soft, NL3=hard) does not make much difference.

• Higher c_{OM}^2 favors disconnected branch.

Constraints on QM EoS from $M_{\rm max}$

• Increasing $\Delta \varepsilon$ reduces $M_{\rm max}$

• Increasing p_{trans} at first reduces then increases M_{max}

 $2 M_{\odot}$ observation allows two scenarios:

- high *p*_{trans}: very small connected branch
- low p_{trans} : modest $\Delta \varepsilon$, no disconnected branch.

Low p_{trans} and high p_{trans} windows

DBHF (stiff) NM, $c_{QM}^2 = 1/3$, $\Delta \epsilon / \epsilon_{trans} = 0.4$

Constraints on QM EoS from $M_{\rm max}$

Radius of heaviest star $R_{\max M}$

Heaviest star is typically the smallest, so lower limit on $R_{\max M}$ is the minimum radius of compact stars.

High p_{trans} : very short connected hybrid branch, radius like that of heaviest hadronic star.

Low p_{trans} : need to zoom in.

Constraints on QM EoS from $R_{\max M}$

Focus on low p_{trans} and $c_{\text{QM}}^2 = 1/3$

- R_{maxM} contours closely follow mass contours
- $M_{
 m max} > 1.95 \, M_{\odot}$ requires $R > 11.25 \,
 m km$
- dashed line is $M_{
 m max} = 2.1 \, M_{\odot}$, requires $R > 12.1 \, {
 m km}$
- \blacktriangleright Observation of a smaller star \Rightarrow high transition pressure or $c_{\rm QM}^2 > 1/3$

Constraints on QM EoS from $R_{1.4\,{ m M}_\odot}$

Low transition pressure and $R_{1.4\,{ m M}_\odot}$

- $R_{1.4\,{
 m M}_{\odot}}$ contours roughly follow mass contours
- $M_{\rm max}$ > 1.95 M_{\odot} requires $R_{\rm 1.4 M_{\odot}}$ > 12 km ($n_{\rm trans} \approx n_0$), rising with $n_{\rm trans}$.
- \blacktriangleright dashed line is $M_{
 m max} = 2.1\,M_{\odot}$, requires $R_{
 m 1.4\,M_{\odot}} > 12.7\,{
 m km}$
- Observation of a smaller 1.4 M_{\odot} star $\Rightarrow c_{QM}^2 > 1/3$.
- $\blacktriangleright\,$ If \textit{p}_{trans} is high then no hybrid stars have mass $1.4\,{\rm M}_{\odot}$

compare Lattimer arXiv:1305.3510: R > 11 km.

NJL models in CSS space

Summary of CSS

- CSS (Constant Speed of Sound) is a generic parameterization of the EoS close to a sharp first-order transition to quark matter.
- Any specific model of quark matter with such a transition corresponds to particular values of the CSS parameters (*p*_{trans}/ε_{trans}, Δε/ε_{trans}, c²_{QM}).
 Its predictions for hybrid star branches then follow from the generic CSS phase diagram.
- Every observation, e.g. observing a $2M_{\odot}$ neutron star, \Rightarrow constraint on CSS parameters.

E.g., for soft NM we need $c_{\rm QM}^2 \gtrsim 1/3$ (But note that $c_{\rm QM}^2 = 1/3 - \mathcal{O}(\alpha_s)$ in pert QCD).

- More measurements of M and R would strengthen the constraints.
- Models of quark matter tend to have $c_{\rm QM}^2 \sim 1/3$ and high transition pressure \Rightarrow very short hybrid branch.

Could we identify hybrid stars via M(R)?

We could identify a phase transition to a high-density phase

(A) Nuclear branch ends with $dM/dR \neq 0$ occurs if $\Delta \varepsilon / \varepsilon_{\mathrm{trans}}$ is large enough

(B,D) Disconnected branch can occur with $M_{\rm max} \gtrsim 2 M_{\odot}$ if nuclear and quark matter are both stiff ($c_{\rm QM}^2 \sim 1$)

Could we identify hybrid stars via M(R)?

We could identify a phase transition to a high-density phase

(A) Nuclear branch ends with $dM/dR \neq 0$ occurs if $\Delta \varepsilon / \varepsilon_{\mathrm{trans}}$ is large enough

(B,D) Disconnected branch can occur with $M_{\rm max} \gtrsim 2M_{\odot}$ if nuclear and quark matter are both stiff ($c_{\rm QM}^2 \sim 1$)

We need:

- better measurements of M and R
- knowledge of nuclear matter EoS

We could benefit from:

► theoretical constraints on parameters of QM EoS (*p*_{trans}/ε_{trans}, Δε/ε_{trans}, c²_{QM})