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Personal digression (historical)

Francesco and Frankfurt: common root?

Franks: the founders of the
Holy Roman Empire around 800 AD

to lceland (3607

to (839

Danes, Swedes, and Norwegians are
Nurmans ar "."IkII'II;IS— ‘inlet men’

. Nurse tu/
America Seats //JPrincip.nf
Mowgorod
Su.ledes
(7930 &
) Danes
Irish ¥ikings
Danelaw
Wessex .. Saxnns
i Is after 600 the
Slavs move into
: " chapelle land vacated Principality
s .pans : by the Goths of Kigy
s Austrasia CAS0) {86
Poitiers =  Frankish

{‘.-'32}‘ Empire

k.of  Yenice

kdm of . :
ﬂiw JI\'\ |ta|'l:'ll .
i ' Papal

(796)

) Croates
I]maggad Emirate Corsica : States —
(Caliphate 929) Pt Conztantinople
Cordoba Bene- =
/—-LM Sardinia gente :
Byzantine
1072y EmpirE
Fez
" : . Tunis m Sicil
Abbasid Caliphate Ails s
(5313 ;

France and Frankfurt are named after Franks as everybody knows...



Four centuries later...

Giovanni di Pietro di Bernardone
Also known as St. Francis (Assisi 1182 -
La Verna 1226)

His father had a successful cloth trading business
with southern France, where he used to go, and
nicknamed his son Francesco (in old

central italian = frenchman). Thereafter, he
adopted it as his first name.

This has been the first occurrence of a person
named Francesco (along with translations
Francis, Franziskus, Francisco, Francois etc.)



Introduction

The single particle distribution function at local thermodynamical equilibrium
(known as Juttner distribution) reads (spinless bosons):
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In HIC often used, e.g., in the so-called Cooper-Frye formula:
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QUESTION: What happens if particles have a spin?

Answering this question urges us to review several of the “familiar” concepts
of statistical mechanics and hydrodynamics. Quantum features cannot be neglected.



What 1s the distribution function?

Cannot say “the density of particles in phase space” because it does not take into account
polarization degrees of freedom.

The answer can be found in the book: S.R. De Groot et al. Relativistic kinetic theory

Covariant Wigner function: scalar field ( ) =tr(p )
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For quasi-free theory, neglecting Compton-wavelength scale variations
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which define the distribution functions of particles and antiparticles



For a free field, previous equations lead to:
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Wigner function of the free Dirac field
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The u, v spinors are the usual solution of the free Dirac equation, with all of their well
known properties (orthogonality and completeness).

Thus, the distribution function for spin %2 particles is a 2x2 matrix



Densities of conserved quantities

Preliminary dn.,
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Stress-energy tensor
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Spin tensor
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We have introduced here a compact spinorial notation, with U and V being 4x2 matrices
In the Weyl representation:

” D3 (p) D2 (plC)

DS Representation (2S+1)-dimensional of SL(2,C), of the kind (0,S)

[p] € SL(2,C) “Standard” transformation taking (1,0) into p/m
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What is the form of the distribution function matrix f at local thermodynamical equilibrium?




Global thermodynamical equilibrium with rotation

Density operator (see e.g. Landau, Statistical physics; A. Vilenkin, Phys. Rev. D 21 2260)
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Grand-canonical rotational
artition function

Obtained by maximizing the entropy S = —tl"(p log )0) with respect to Q2
with the constraints of total mean energy, mean momentum and mean angular momentum
Fixed (equivalent to exact conservation for a large system)

w/T is the Lagrange multiplier of the angular momentum conservation constraint
and its physical meaning is that of an angular velocity

V=WwXX



Classical (=non-quantum) Landau's argument
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Single particle distribution function at
global thermodynamical equilibrium

In the Boltzmann limit, for an ideal relativistic gas, this is a calculation which can be done
without the explicit use of quantum field theory, just with quantum statistical mechanics and
group theory (F. B., L. Tinti, Ann. Phys. 325, 1566 (2010)).

More explicitely: maximal entropy (equipartition), angular momentum conservation and
Lorentz group representation theory.
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Re (iw/T) = eXp[DS (J3)w/T] = SL(2,C) matrix representing a rotation around @ axis (z or 3)
by an imaginary angle 1w/T.
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As a consequence, particles with spin get polarized in a rotating gas
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F.B., F. Piccinini, Ann. Phys. 323, 2452 (2008)



Barnett effect

S. J. Barnett, Magnetization by Rotation, Phys. Rev.. 6, 239-270 (1915).

Spontaneous magnetization of an uncharged body when spun around its axis, in
quantitative agreement with the previous polarization formula

M =2y

)

It 1s a dissipative transformation of the orbital angular
momentum into spin of the constituents. The angular
velocity decreases and a small magnetic field appears;
this phenomenon i1s accompanied by a heating of the
sample.




Barnett effect

S. J. Barnett, Magnetization by Rotation, Phys. Rev.. 6, 239-270 (1915).

Spontaneous magnetization of an uncharged body when spun around its axis, in
uantitative agreement with the previous polarization formula

M =2y

)

It 1s a dissipative transformation of the orbital angular
momentum into spin of the constituents. The angular
velocity decreases and a small magnetic field appears;
this phenomenon i1s accompanied by a heating of the
sample. Requires a spin-orbit coupling.



Converse: Einstein-De Haas effect
the only experiment by Einstein

A. Einstein, W. J. de Haas, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings, 18 I, 696-711 (1915)

— Rotation of a ferromagnet originally at rest
i T when put into an external H field
An effect of angular momentum
conservation:

spins get aligned with H (irreversibly) and

this must be compensated by a on overall
orbital angular momentum

Wie die Metralogie lemt, Elaktrongn 2u zahien




Dirac-1zation of f

For the case S=1/2 the formulae can be rewritten using Dirac spinors
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They can be also rewritten in a fully covariant form
taking into account that

o = (w/T) (8,07 — 6,07) = v/ B2

Q being the acceleration tensor of the Frenet-Serret /

tetrad of the velocity field lines
and the generators of the Lorentz group representation
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Single particle distribution function
at local thermodynamical equilibrium

In principle, it should be calculated from the covariant Wigner function with the
local thermodynamical equilibrium quantum density operator

exp[— [ d*x (fo” 3, (z) — 7% (z) — lg&“"ww(a’))]
tr(exp[— [ d3x (TO”{.%,,(I) — 0¢(x) — ISO#M‘W(I’))})

PLE(t) =

Obtained by maximizing the entropy ¢ — _ ¢y ( plog ﬁ) with respect to P
with the constraints of fixed mean energy-momentum density and fixed mean
angular momentum density.

Wz, k) = tr(pre(t)Combination of quantum fields)
A complicated calculation (PhD student E. Grossi at work).
One can make a reasonable ansatz which
@ reduces to the global equilibrium solution in the Boltzmann limit

& reduces to the known Fermi-Juttner or Bose-Juttner formulae at the LTE
in the non-rotating case



Ansatz
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What is w(x)?
This 1s a crucial issue to calculate polarization

At global equilibrium:

D = (0/T) (5502 = 0202) = /5P
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The latter equation can be checked explicitely, but it is form is indeed a deeper
consequence of relativity coupled with thermodynamics

Equilibrium in relativity can be achieved only if the inverse four-temperature field

is a Killing vector
8#,51, =+ auﬁ,u =0

m) 5,=0,+w,z” b and w constants
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If deviations from equilibrium are small, we know that the tensor w(;{;) should differ
from the above expression only by terms which vanish at equilibrium, 1.e. second-order
terms in the gradients of the [ field

Wpy = _5(0;1 /51/ — du/dp,) + 0(02 ﬂ)

This 1s what we need for leading-order hydrodynamics!



Polarization 1n a relativistic fluid

Definition: 1 s also known as Pauli-Lubanski vector
I, = —5€upor 5™ —
2 —m
~ . should be the total angular
momentum vector of the particle
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Canonical spin tensor
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Polarization four-vector in the LAB frame

Final formulae:
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As a by-product, a new effect is predicted: particles in a steady temperature gradient
(here with v = 0) should be transversely polarized:
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Cooper-Frye for polarization
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Polarization in relativistic heavy 1on collisions

There have been several papers in the past years about this subject:

A. Ayala et al., Phys. Rev. C 65 024902 (2002)

Z.T. Liang, X. N. Wang, Phys. Rev. Lett. 94 102301 (2005) and others
B. Betz, M. Gyulassy and G. Torrieri, Phys. Rev. C 76 044901 (2007)
F. B., F. Piccinini and J. Rizzo, Phys. Rev. C 77 024906 (2008)

yet no definite formula connecting the polarization of hadrons to the hydrodynamical model.

Now we have it:

pT fdz)\p)t np(l — ?’I,F)apﬁg
8m [ d¥xp* np

I1,.(p) = €ppor

and we can use it to predict /\ polarization in peripheral heavy ion collisions
(F.B., L. Csernai, D.J. Wang in preparation)

Distribution of protons in the /A rest frame

LAV 1
NdQ*  4rx

1 +ally - p*) 11 (p) = I(p) —




Vorticity of the u field
L. Csernai, V. Magas,

D.J. Wang,

Phys. Rev. C 87 034906 (2013)

Vorticity of the [3 field (thermal vorticity)
F.B., L. Csernai, D.J. Wang in preparation

FIG. 2. (Color online) The weighteQ%vera.ge relativistic
vorticity, Q..(x,z), of temperature 4-vector, f)’“, calculated
for all [x-z] layers at t=3.56 fm/c. The collision energy is
VSNN = 2.76 TeV, b = 0.5 bpmar for (a) and b = 0.7 bar for
(b). The configuration (a) is not favoring KHI while (b) is.
The cell size is dr = dy = dz = 0.585 / 0.4375 fm, while the
average weighted vorticity is (2.,) = 0.033 /0.078 for (a) /
(b) respectively.

FIG. 6. (Color online) The classical (a) and relativistic (b)
weighted vorticity £2_, (c/fm), calculated in the reaction xz plane
att = 6.94 fm/c. The collision energy is \/syy =2.76 TeV and b =
0.7 by the cell size is dx = dy = dz = 0.4375 fm. The average
vorticity in the reaction plane is 0.01555 (0.05881) c/fm for the
classical (relativistic) weighted vorticity respectively.



Because of the parity symmetry of the collision

I(p) = 8(;1, fdvfz};/(z: -

The most polarized A are those in the reaction plane (normal to angular momentum).

action plane * ~
4 A
A




Py (GeV/c)

s 11)(p) = 1L(p) — E(Hm)ﬂ(p)*p e

Average polarization consistent with the bound set by RHIC (<0.02).

1, (PP, F.B., L. Csernai, D.J. Wang in p4reparation Do(Py:Py)l

Py (GeVlc)

NOTE: the polarization owing to the spectator's magnetic field (E. Bratkovskaya et al.)
1s at least 4 orders of magnitude less than the one shown above




Conclusions and Outlook

¢ We have determined the relativistic distribution function of particles with spin %2 at local
thermodynamical equilibrium.

¢ At the leading order hydro, particle polarization is proportional to the vorticity of the
inverse temperature four-vector.

¢ A new (quantum statistical) effect 1s predicted: transverse polarization in a steady
T gradient

@ This formula allows to guantitatively determine polarization of baryons in peripheral
relativistic heavy ion collisions at the freeze-out and its momentum dependence. It
1s likely to have applications in the so-called CME and CVE.

@ The detection of a polarization (in agreement with the prediction of the hydro model)
would be a striking confirmation of the local thermodynamical equilibrium picture and,

to my knowledge, it would be the first direct observation of polarization induced by rotation
for single particles (Barnett effect sees the induced B field)

¢ It would also have theoretical implications for the existence of the spin tensor.
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