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“It is shown that different pairs of stress-energy and spin tensors of quantum

relativistic fields related by a pseudo-gauge transformation, i.e., differing by a

divergence, imply different mean values of physical quantities in

thermodynamical nonequilibrium situations. Most notably, transport

coefficients and the total entropy production rate are affected by the choice of

the spin tensor of the relativistic quantum field theory under consideration.

Therefore, at least in principle, it should be possible to disprove a

fundamental stress-energy tensor and/or to show that a fundamental spin

tensor exists by means of a dissipative thermodynamical experiment.”



On Energy-Momentum & Spin: the inertial currents in classical field theory

1. Action principle, translational invariance

2. Lorentz invariance

3. Poincaré invariance

4. On formalism, the electromagnetic energy-momentum, the Dirac field,
and on open and closed systems

5. Relocalization of energy-momentum and spin

6. Dynamic Hilbert energy-momentum in general relativity

7. Dynamic Sciama-Kibble spin in Poincaré gauge theory

[8. Extra dilation invariance and improved energy-momentum current]

[9. An algebra of the momentum and the spin currents? ]



1. Action principle, translational invariance

◮ SR, Minkowski spacetime M4, Lorentz metric gij
∗
= oij := diag(+−−−),

coordinates x i , i , j , k , ... = 0, 1,2, 3; here Cartesian coo., matter field Ψ,
could be a scalar, Weyl, Dirac, Maxwell, Proca, Rarita-Schwinger,
Fierz-Pauli field etc.). Isolated material system with 1st order action
(see Landau-Lifshitz, Corson): Wmat :=

1
c

∫
dΩL(Ψ, ∂Ψ).

◮ Invariance under 4 transl.: x
′ i = x i + ai . Noether theorem and δL

δΨ
= 0,

∂jTi
j = 0 , Ti

j

︸︷︷︸
4×4

:= Lδj
i −

∂L

∂∂jΨ
∂iΨ

canonical energy-momentum tensor of type ( 1
1 ), Noether energy-

momentum (or momentum current density), 16 indep. comps.,
Whittaker: Minkowski’s most important discovery; is asymmetric a priori

◮ Physical components of components of Ti
j (a,b=1,2,3):

T =

(
T0

0 = −energy d. T0
b = (energy flux d.)× c

Ta
0 = −(mom. d.)/c Ta

b = −mom. flux d.

)

[
Ti

j
]

= h ℓ−3t−1
︸ ︷︷ ︸

stress

×

(
1 ℓ/t

(ℓ/t)−1 1

)

here h := [action], ℓ := [length], t := [time], method of
Dorlego-Schouten. Lagrangian: [L] = h

ℓ3 t
, h

t = [energy].



◮ Note, the spatial components [Ta
b] = (mv)v 1

ℓ3 = E
ℓ3 = f

ℓ2 = stress, see
Lorentz’s interpretation of the Maxwell stress.

◮ Semiclassical Weyssenhoff ansatz for a fluid:

Ti
j

︸︷︷︸
mom. curr. d.

= pi︸︷︷︸
mom. d.

v j
︸︷︷︸

velocity

, observe natural index positions!

◮ If pi = ρ︸︷︷︸
mass d.

gikv k , then Tij = Tji symm.. Is not the case for spin fluids

◮ Superfluid 3He in the A-phase, is as spin fluid (Lee, Osheroff,
Richardson 1972). Take the angular momentum law, see D. Vollhardt
and P. Wölfle, The Superfluid Phases of Helium 3, London 1990, p.427:
The antisym. piece of stress reads:

ǫi jkΠjk︸ ︷︷ ︸
∼ǫabcT

bc

= −(
∂

∂t
+ vn ·∇)(t0li) +∇j Bj i − ∇j︸︷︷︸

∼∇b

{
~

2m
gs,j li

︸ ︷︷ ︸
∼pbǫacd s

cd

+[̂l × T
∂s

∂(∇j l̂)
]i}

vn = velocity of normal fluid, t0 = modulus of intrinsic angular momentum
t = t0̂l, li = preferred direction of A-phase order parameter, s = entropy
density, T = temperature, gs = momentum density of superfluid
component; this is an irrefutable proof that asymmetric stress tensors
exist in nature (see Pascal-Euler-Cauchy-Boltzmann-Voigt-the
Cosserats-E.Cartan...)



◮ In a spacetime with metric, as in the M4, we can decompose Tij

irreducible wrt the Lorentz group:

Tij = 6Tij + T[ij] +
1
4

gijTk
k

16 = 9 (sym.tracefree)⊕ 6(antisym.) ⊕ 1 (trace) ,

6Tij := T(ij) −
1
4 gijTk

k , Bach parentheses (ij) := 1
2{i + j}, [ij] := 1

2{i − j}.

◮ In electromagnetism, only 6Tij survives (9 components), since it is
massless, that is, Tk

k = 0, and carries helicity, but no (Lorentz) spin,
i.e., T[ij] = 0, see below.

◮ Classical ideal (perfect, Euler) fluid of GR (ρ = mass/energy density, p =
pressure, ui = velocity of fluid):

Tij = (ρ+ p)uiuj − pgij , T[ij] = 0 , Tk
k = ρ− 3p .

◮ Where took Einstein the symmetry of the energy-momentum tensor
from? Einstein (The Meaning of Relativity, 1922, p.50) discussed the
symmetry of the energy-momentum tensor of Maxwell’s theory.
Subsequently, he argued: “We can hardly avoid making the assumption
that in all other cases, also, the space distribution of energy is given by
a symmetrical tensor, Tµν , ...” This is hardly a convincing argument if
one recalls that the Maxwell field is massless.



2. Lorentz invariance

◮ Invariance under 3+3 Lorentz transf.: x
′ i = x i + ωijxj , with ω(ij) = 0

Noether theorem and δL
δΨ

= 0,

∂k
(
Sij

k

︸︷︷︸
spin

+
1
2

xiTj
k −

1
2

xjTi
k

︸ ︷︷ ︸
orbital angular momentum

)
= 0 , Sij

k

︸︷︷︸
6×4

:= −
∂L

∂∂kΨ
fijΨ

canon. or Noether spin Sij
k = −Sji

k , the spin current density, is a
tensor of type ( 1

2 ), see also Einstein-de Haas effect (1915) .

◮ Physical components of Sij
k (a,b=1,2,3):

S =

(
S0

b0 = en.-dipole mom. d. S0
bc = (en.-dipole mom. flux d.)/c

Sa
b0 = (spin density)× c Sa

bc = spin flux density

)

[
Si

jk
]

= h ℓ−2t−1
︸ ︷︷ ︸

moment stress

×

(
1 ℓ/t

(ℓ/t)−1 1

)

◮ [Sa
bc ] = (mvℓ)v 1

ℓ3 = fℓ
ℓ2 = moment stress, known from Voigt (1887) and

from the Cosserat brothers (1909), from micropolar media,...



◮ Convective Weyssenhoff ansatz (distinguish spin current from spin):

Sij
k

︸︷︷︸
spin curr. d.

= sij︸︷︷︸
spin

v k
︸︷︷︸

velocity

= −Sji
k

◮ Irreducible decomposition:

Sij
k = TEN

Sij
k + TRA

Sij
k + AX

Sij
k

24 = 16 ⊕ 4 ⊕ 4

with AX
Sijk := S[ijk ] and TRA

Sij
k :=

2
3
S[i|ℓ

ℓδk
|j]

For the Dirac field we will find out

D
Sijk=

D
S[ijk ] , that is, only AX D

Sijk 6= 0 (4 components)

◮ Back to the angular momentum law. Differentiate and apply ∂kTi
k = 0:

∂k

(
S

ijk + x [i
T

j]k
)
= 0 =⇒ ∂kS

ijk − T
[ij] = 0

The boxed version can be generalized to Riemann(-Cartan) spacetimes
directly, see below. If Sijk = 0, then T[ij] = 0 (symmetric
energy-momentum tensor), but not necessarily vice versa.



3. Poincaré invariance
◮ Thus, Poincaré invariance yields the 4 + 6 conservation laws

∂kTi
k = 0 (energy-momentum)

∂kSij
k − T[ij] = 0 (angular momentum)

The angular momentum law reflects the semi-direct product structure of
the Poincaré group. Recall its Lie algebra:

[Pi ,Pj ] = 0 ,
[Lij ,Pk ] = gk [iPj] , (transl. and Lorentz transf. mix, see Sijk + x[iTj]k )
[Lij , Lkℓ] = gk [iLj]ℓ − gℓ[iLj]k .

◮ The rigid Poincaré group of SR can be gauged [see Blagojević &
H.(eds.) Gauge Theories of Gravitation (2013)] yielding a Riemann-
Cartan spacetime. Then, in particular, the conserv. laws generalize to

∗

∇k Ti
k =

torsion︷︸︸︷
Cik

ℓ
Tℓ

k +

curvature︷ ︸︸ ︷
Rik

lm
Slm

k ,
∗

∇k Sij
k − T[ij] = 0 .

Here
∗

∇k := ∇k + Ckℓ
ℓ. General relativity is the subcase for Sij

k = 0.
Otherwise, the Einstein-Cartan(-Sciama-Kibble) theory with Cij

k 6= 0. In
GR and in EC the Noether theorems for translation + Lorentz can be
mapped to the Bianchi identities.



4. On formalism, the electromagnetic energy-momentum, the
Dirac field, and on open and closed systems

◮ Here it would be time in introduce the calculus of exterior differential
forms in order to streamline the Lagrange-Noether formalism. In such a
formalism one works with an orthonormal coframe (tetrad) ϑα = ei

αdx i ,
a Lorentz connection Γαβ = Γi

αβdx i = −Γβα, and the fields are exterior
forms (0-forms, 1-forms,..., 4-forms) with values in the algbra of some
Lie group. The electromagnetic potential is a 1-form A = Aidx i , the field
strength a 2-form F := dA = 1

2 Fij dx i ∧ dx j , for details see Hehl &
Y.N. Obukhov, Foundations of Electrodynamics: Charge, flux, and
metric, Birkhäuser, Boston (2003).

◮ We will not use this formalism heavily, but here only quote two
interesting result: In exterior calculus, one works with the geometric
objects and not with the components therefrom. For Maxwell’s vacuum
field, the potential A , this has the consequence that the canonical (i.e.
Noether) energy-momentum tensor is symmetric and gauge invariant
directly, without symmetrization, that is, without the gauge-dependent
artifacts created in the component formalism (à la Landau-Lifshitz).



◮ The second example, Dirac field in exterior calculus for illustration:

LD =
i
2
(Ψ⋆γ ∧ DΨ+ DΨ ∧ ⋆γΨ) + ⋆mΨΨ

with γ := γαϑ
α and γ(αγβ) = oαβ14. The 3-forms of the canonical

momentum and spin current densities (Dα := eα⌋D):

Tα =
i
2
(Ψ ⋆γ ∧ DαΨ+ DαΨ ∧ ⋆γΨ) ,

Sαβ =
1
4
ϑα ∧ ϑβ ∧Ψγγ5Ψ .

In Ricci calculus Sαβγ = S[αβγ] =
1
4 ǫαβγδΨγ5γ

δΨ and tαβ = T(αβ)

(Tetrode), see subsequent slide. These are the inertial currents (and
thus the gravitational currents) of the classical Dirac field. A
decomposition of (Tα,Sαβ) à la Gordon, yields the gravitational
moment densities of the Dirac field (arXiv:gr-qc/9706009); is a
special case of relocalization, see below.

◮ Off shell, the Noether theorems read:

∂kTi
k ≡ −

δL

δΨA
∂iΨ

A, ∂kSij
k − T[ij] ≡ −

δL

δΨA
(fij)

A
BΨ

B .

If we have external fields, we separate fields in two subsets
ΨA =

{
ΨA

dyn,Ψ
α
ext

}
. For external fields we have, in general, δL/δΨα

ext 6= 0.



5. Relocalization of energy-momentum and spin
◮ Canonical currents are not uniquely defined. Relocalization

T̂i
j = Ti

j − ∂l Xi
jl ,

Ŝkl
j = Skl

j − 2X[kl]
j + ∂i Ykl

ji .

Still, ∂j T̂i
j = 0 ,

∂jŜkl
j − T̂[kl] = 0 .

Arbit. Xi
jl = −Xi

lj ,Ykl
ji = −Ykl

ij = −Ylk
ji (Hehl, Rep.Math.Phys.1976).

Integrated total energy-mom. and angular momentum remain the same.
◮ Belinfante relocalization (1939): Require Ŝkl

j = 0. Resolve wrt X .
Then,

Xi
jl = −

1
2

(
S

jl
i +Si

lj −Si
jl
)
−

1
2
∂n

(
Y jl

i
n + Yi

ljn − Yi
jln
)
,

and the relocalized e.-m., ti j := T̂i
j , with Ŝkl

j = 0, Yij
kl = 0, reads

ti
j = Ti

j +
1
2
∂k

(
S

jk
i +Si

kj −Si
jk
)
.

◮ Belinfante tensor is not symmetric, in general,

2t[kl] ≡
δL

δΨA
(fkl)

A
BΨ

B .

◮ The Gordon relocalization, mentioned above, differs from the Belinfante
relocalization.



◮ It is crucial to distinguish closed and open systems. Closed system:
dynamics totally determined by ΨA(x). Open system: some fields are
non-dynamical—external.

◮ Suppose all fields ΨA(x) dynamical, that is, the system is closed. Then
δL/δΨA = 0 and energy-momentum and angular momentum are
conserved

∂jTi
j = 0, ∂jJkl

j = 0 .

Here Jkl
j = Skl

j + Lkl
j with Lkl

j = xk Tl
j − xl Tk

j .

◮ Canonical energy-momentum is asymmetric, in general,

2T[kl] = ∂jSkl
j 6= 0 .

The Belinfante tensor for a closed system is conserved and symmetric

∂j ti
j = 0, t[kl] = 0 .



◮ Dynamics of open system (temporal change of state) is not determined
by fundamental field variables, but also depends on “external” fields
(background)

◮ Both canonical tensor Ti
j and Belinfante tensor ti j are neither symmetric

nor conserved, in general
We separate fields in two subsets ΨA =

{
ΨA

dyn,Ψ
α
ext

}

◮ For external fields we have δL/δΦA
ext 6= 0. The Noether identities reduce

to balance equations

∂j ti
j = −

δL

δΨα
ext
∂iΨ

α
ext, 2t[kl] =

δL

δΨα
ext
(fkl)

α
βΨ

β
ext

◮ Balance relations yield conservation laws for background with
symmetries. External fields are, e.g., constant in time/space

∂Ψα
ext

∂t
= 0, or/and ∂aΨ

α
ext = 0

◮ The old dispute on the Abraham versus Minkowski energy-momentum
tensor for matter in the electromagnetic field can be resolved by these
methods, see Yuri Obukhov et al., loc. cit., and our joint book.



6. Dynamic Hilbert energy-momentum in general relativity

◮ How can we choose amongst the multitude of relocalized energy-
momentum tensors, and how can we find the physical correct one? The
Belinfante recipe was to kill T[kl]. This does not yield a unique
relocalized tensor.

◮ Hilbert defined already in 1915 the dynamic energy-momentum as the
response of the matter Lagrangian to the variation of the metric:

Hi
tij := 2

δL(g,Ψ ,
{}

∇ Ψ)

δg ij
.

g ij (or its reciprocal gkl ) is the gravitational potential in Einstein’s theory
of gravitation (general relativity, GR). The matter Lagrangian is
supposed to be minimally coupled to g ij , in accordance with the
equivalence principle. Only in the gravitational theory, in which
spacetime can be deformed, we find a real local definition of the
material energy-momentum tensor (see Weyl).

◮ The Hilbert definition is analogous to the relation from elasticity theory

stress ∼ δ(elastic energy)/δ(strain) .

Recall that strain εij := 1
2 (

(def)g ij − (undef)g ij). Even the factor 2 is
reflected in the Hilbert formula.



◮ Rosenfeld (1940) has shown, via Noether type theorems, that the
Belinfante tensor tij , derived within special relativity, coincides with the
Hilbert tensor Hitij of GR. Thus, the Belinfante-Rosenfeld recipe leads, in
the framework of GR, to the energy-momentum tensor:

Hi
ti

j = ti
j = Ti

j +
1
2
∂k

(
S

jk
i +Si

kj −Si
jk
)
. (∗)

Recall that (Ti
j ,Sij

k ) are the canonical Noether currents.

◮ The Rosenfeld formula (*) identifies the Belinfante with the Hilbert
tensor. In other words, the Belinfante tensor provides the correct source
for Einstein’s field equation.

◮ As long as we accept GR as the correct theory of gravity, the localization
of energy-momentum and spin of matter is solved. This state of mind is
conventionally kept till today by most theoretical physicists.

One should note that the spin of matter has a rather auxiliary function in
this approach. After all, the spin of the Hilbert-Belinfante-Rosenfeld
tensor vanishes.

◮ However, the Sciama-Kibble theory of gravity (1961), generally known
as Einstein-Cartan theory (EC), has turned the Rosenfeld formula (*)
upside down...



7. Dynamic Sciama-Kibble spin in Poincaré gauge theory
◮ Gauging of the Poincaré group, gauge potentials orthonormal coframe

and Lorentz connection (ϑα = ei
αdx i , Γαβ = Γi

αβdx i = −Γβα) =⇒
Poincaré gauge theory of gravity (PG) with a Riemann-Cartan space
with Cartan’s torsion and with Riemann-Cartan curvature, respectively:

Cij
α := D[i ej]

α, Rij
αβ := “D”[iΓj]

αβ (or Cα = Dϑα, Rαβ = “D”Γαβ).

◮ It is now straightforward: The currents are defined by variations with
respect to the potentials:

SK
Tα

i =
δL(e,Γ,Ψ ,

Γ

D Ψ)

δei
α

, SK
Sαβ

i =
δL(e,Γ,Ψ ,

Γ

D Ψ)

δΓi
αβ

The dynamical definition of spin SKSαβ
i is due to Sciama-Kibble (1961).

It is only possible in the Riemann-Cartan spacetime of PG. Also for
energy-momentum SKTα

i we have a new, revised definition. The Hilbert
tensor plays no longer a decisive role.

◮ The Sciama-Kibble definition of the spin, is analogous to the relation

moment stress ∼ δ(elastic energy)/δ(contortion) .

Recall that the contortion is some kind of “rotational strain” in a
Cosserat medium, see H & Obukhov, Elie Cartan’s torsion in geometry
and in field theory, an essay, arXiv:0711.1535.



◮ Application of Noether identities yields, after a lot of algebra,
SK
Tα

i = Tα
i , SK

Sαβ
i = Sαβ

i .

The dynamically defined currents à la Sciama-Kibble coincide with the
canonical Noether currents of classical field theory, in marked contrast
to the doctrine in the context of GR.

◮ We express the canonical energy-momentum tensor in the Hilbert one:
SK
Tα

i = Hi
tα

i −
1
2

∗

Dk (Sα
ik −S

ik
α +S

k i
α ) , (∗∗)

SK
Sαβ

i = Sαβ
i .

The new Rosenfeld type formula (**) reverses its original meaning in (*).
In the Poincaré gauge theory (PG), the canonical tensor represents the
energy-momentum distribution of matter and the (sym)metric Hilbert
tensor now plays an auxiliary role. Moreover, we are now provided with
a dynamic definition of the canonical spin tensor. In GR, the spin was
only a kinematic quantity floating around freely.

◮ These results one the correct distribution of energy-momentum and
spin in the framework of PG are are independent of a specific choice of
the gravitational Lagrangian.

◮ However, if we choose the RC curvature scalar as a gravitational
Lagrangian, we arrive at the Einstein-Cartan(-Sciama-Kibble) theory of
gravitation, which is a viable theory of gravity competing with GR.



8. Extra dilation invariance and improved energy-momentum
current

◮ Matter Lagrangian is assumed to be, in addition to Poincaré invariance,
scale invariant, then we have the canon. Noether dilation current
(3-form)

∆ = ∆αηα , ∆︸︷︷︸
intrinsic dil. curr.

:= wΨ ∧
∂L
∂DΨ

(here ηα := eα⌋η, with frame eα and volume 4-form η). The dilation
current ∆α is somewhat analogous to the electric current Jα

(1-parameter gauge transformation).
w is weight of scale transformation:

Ψ(x) → Ψ′(x ′) = (eω)wΨ(eωx) .

Noether law: D∆+ ϑα ∧ Tα
∗
= D(∆ + xα ∧ Tα︸ ︷︷ ︸

orb. dil. curr.

) = 0 .

◮ Three types of Noether theorems (Poincaré ⊗ dilation):

DTα = 0 (4 cons. momentum currents) ,

DSαβ + ϑ[α ∧ Tβ] = 0 (6 cons. angular momentum currents) ,

D∆ + ϑα ∧ Tα = 0 (1 cons. dilation current)

(in the literature, intrinsic and orbital dil. current are not cleanly defined).



◮ Take the superpotential 2-forms Mα,Yαβ,Z such that

T̂α(M) = Tα − DMα ,

Ŝαβ(M,Y ) = Sαβ − ϑ[α ∧ Mβ] − DYαβ ,

∆̂(M,Z ) = ∆− ϑα ∧ Mα − DZ .

The hatted quantities fulfill again the 4 + 6 + 1 conservation laws. The
total charges remain the same.

◮ For the improved energy-momentum tensor 6 tα of Chernikov-Tagirov
(1968) and Callan-Coleman-Jackiw (1970),

6 tα := T̂α(M) for Ŝαβ(M,Y )
!
= 0 and ∆̂(M,Z )

!
= 0 ,

we require additionally that its trace vanishes (→ soft pions):

ϑα∧ 6 tα = ϑα ∧ T̂α + D∆− DDZ !
= 0 .

This can be achieved and, accordingly, the improved energy-
momentum tensor is symmetric, traceless, and divergencefree:

ϑ[α∧ 6 tβ] = 0 , ϑα∧ 6 tα = 0 D6 tα = 0 .

(In Ricci calculus: 6 t[αβ] = 0 , 6 tγ
γ = 0 , ∇β 6 tα

β = 0.)
◮ Tα , Sαβ , and, for massless fields, additionally ∆ are the inertial (and

thus the gravitational) currents.



9. An algebra of the momentum and the spin currents?

◮ I discussed exclusively classical field theory. Can we learn something
for a corresponding quantization of gravity? Our classical analysis has
led us to the gravitational currents Tα and Sαβ . They represent the
sources of gravity.

◮ In strong and in electroweak interaction, before the standard model had
been worked out, one started with the current algebra of the
phenomenologically known strong and the electroweak currents
(Gell-Mann 1961, see also T.Y. Cao, From Current Algebra to Quantum
Chromodynamics, Cambridge 2010).

◮ Schwinger (1963) studied, e.g., the equal time commutators of the
components of the Hilbert e.-m. tensor. Should one try to include also
the spin tensor components and turn to the canonical tensors?

◮ In the Sugawara model (1968), A field theory of currents, 8 vector and 8
axial vector currents for strong interaction are introduced and a
symmetric e.-m. current expressed bilinearly in terms of these currents.
Now that we have good arguments that the gravitational currents are Tα

and Sαβ , one may want to develop a corresponding current algebra by
determining the equal time commutator of these currents.....

Soli Deo Gloria


