H. van Hees Wintersemester 2025/2026

Mathematische Methoden der Physik fiir das Lehramt L3 - Losungen 10

Aufgabe 1: Drehungen um eine vorgegebene Achse
Zeigen Sie, daf§ durch

-/ A

X'=D;(p)x =7n(n-X)+nx (X X1n)cosp+ (7 X X)sing (1)

eine Drehung des Vektors X um die Drehachse in Richtung von 7, wobei |72| = 1, um den Winkel ¢ €
[0, 7] im Sinne der Rechte-Hand-Regel gegeben ist.

Anleitung: Im folgenden sei £ = X /» mit r = |X| der Einheitsvektor in Richtung von X. Falls 72 || % ist die
Formel sicher korrekt (warum?). Sei also 7 x £ # 0. Dann beschreiben wir die Drehung am besten in dem
folgenden an X angepafiten kartesischen rechtshindigen Koordinatensystem é; = 7, €, = 71 X x/|x X 7|,
€, =6, X &

(a) Driicken Sie €, und &, so einfach wie mdglich mit Hilfe von 7 und % aus.

Lésung: Zuerst berechnen wir zur Normierung den Betrag des Vektorprodukts
X x AP =@Rx7n)- (& x7)=[(& x7)x&] 7. )

Dabei haben wir im letzten Schritt die allgemein giiltige Formel (a4 x Z';) C=a- (Z x ¢). Fiir das
Doppelvektorprodukt in der Klammer konnen wir die Formel
@xb)yxE=b(G-8)—a(b-?) 3)
verwenden, was auf
1% x 2 =[x =R -#)]- 7 =1—(%-7) )
fihrt.

Dieser Ausdruck ist offenbar nur dann 0, wenn % || 72, und das ist voraussetzungsgemifd nicht der
Fall. Es ist also

- XX
L ©)
1—(x-n)?
Die erneute Anwendung von (3) liefert
R R R —>>< A x - A (7. M\
=%, x7,= (7 X x) :1 _* (n x):i ©
VI=(E-AP  J1=(%-np

(b) Bestimmen Sie die Komponenten von X bzgl. des kartesischen Koordinatensystems (é;,é,,€;).

Losung: Da die Vektoren €, ¢, und ¢; eine kartesische Basis bilden, sind die Komponenten des
Vektors durch die Skalarprodukte mit diesen Basisvektoren gegeben. Es gilt also

X =8 F= e [1— (- 7] = ry/1—(2-7)2,
JI—(&-n)
- - - 7
xzzez-x:rez-fc:O, )
X3:E3';C>:ﬁ'3?:rﬁ'£.



©

(d)

Bzgl. dieses Koordinatensystems handelt es sich offenbar um eine Drehung um die 3-Achse. Was
sind demnach die Komponenten von X’ bzgl. dieses Koordinatensystems?

Hinweis: Zeichen Sie die Projektion X) von ¥ und ¥| von %" auf die 12-Ebene in das oben konstru-
ierte kartesische Koordinatensystem ein und lesen Sie die Komponenten x| und x/, des gedrehten
Vektors ab. Beachten Sie weiter, daff offenbar x5 = x; gilt.

Losung: Die Projektion des Vektors X auf die 12-Ebene ist gemif} (7) offenbar durch
X = X6 ®)
gegeben. In der Projektion auf die 12-Ebene sieht die Situation also wie folgt aus:

X

A

=}

©s,

Die Orientierung der drei Basisvektoren in dieser Zeichnung ergibt sich daraus, daf§ die Basis kon-
struktionsgemif} eine rechtshindige Basis ist. Ebenso erfolgt definitionsgemif} die Drehung um die
n = €;-Achse im Sinne der Rechte-Hand-Regel, d.h. streckt man den Daumen der rechten Hand
in die Richtung von 7 (in der Zeichnung also aus der Zeichenebene heraus, angedeutet durch den
Kreis mit Punkt), geben die Finger die Drehrichtung an. Fiir die Komponenten von X’ ergibt sich
aus der Zeichnung sofort

!/ _ /I . /I _ N Y S e (9
X] =7 COSQ, X,=7|SINQ, X3=X3=7rn-X=7n-X. )

Dabei ist
rp =X = x| =7y 1—=(x-7)2 (10)

Driicken Sie zum Schluss
X'= E X'é;
- )
=1
durch die Vektoren x und 7 aus und zeigen Sie, daf§ das Resultat mit (1) ibereinstimmt.

Lasung: Man liest die Komponenten des gedrehten Vektors aus der obigen Skizze ab, was auf (9)
fihrt und driickt schliefflich wieder die Basisvektoren mit Hilfe der Formeln (4) und (5) durch 7
und x aus. Man erhilt dann nach einigen einfachen Umformungen

3
k’/:Zx;Ej =7 (é;cosp+eésing)+n(n-x)=(n-X)n+cosp[n X (X xn)]+sinp(n x X), (11)
=1

und das war zu zeigen.



Diese Formel gilt offenbar auch fiir den Fall, dafl X || 72, denn dann ist 7z X X = 0, und folglich ergibt

(11)

% =D =%, (12)

und das muf} auch so sein, denn wenn X || 7, indert sich an dem Vektor durch Drehung um sich
selbst nichts.

Bemerkung: Wir haben eben gezeigt, daf§ die Drehungen offenbar durch einen Drehwinkel ¢ € [0, 7]
und einen Einheitsvektor 7 eindeutig parametrisiert werden konnen. Wir konnen dies zusammenfassen
zu dem Vektor ¢ = @7, und der liegt in der abgeschlossenen Kugel |¢| < 7. Allerdings ist fiir ¢ = 7 die
Drehachse nicht eindeutig bestimmt, denn offenbar fiihrt eine Drehung um 7 um die Achse —7 zum glei-
chen Resultat wie die Drehung um die Achse 7. Um die Drehung um 7 eindeutig zu machen, miissen wir
also Punkte auf dem Rand der Kugel vom Radius 7 identifizieren. Dieses kaum vorstellbare geometrische
Konstrukt ergibt eine interessante topologische Eigenschaft, die allerdings erst in der Quantentheorie
interessant wird. Fiir die klassische Mechanik kénnen wir diese Subtilititen getrost ignorieren.
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