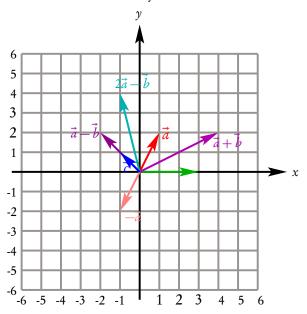
Mathematische Methoden der Physik für das Lehramt L3 - Lösungen 6

Aufgabe 1: Vektoralgebra in der Ebene

Gegeben seien die drei Vektoren \vec{a} , \vec{b} und \vec{c} in der *x-y*-Ebene bzgl. einer kartesischen Basis: $\vec{a} = (1,2)^{T}$, $\vec{b} = (3,0)^{T}$, $\vec{c} = (-1,1)^{T}$.

(a) Zeichnen Sie die drei Vektoren in ein Koordinatensystem.



- (b) $|\vec{a}| = \sqrt{5}$, $|\vec{b}| = 3$, $|\vec{c}| = \sqrt{2}$.
- (c) $-\vec{a} = (-1, -2), \vec{a} + \vec{b} = (4, 2), \vec{a} \vec{b} = (-2, 2) \text{ und } 2\vec{a} \vec{b} = (-1, 4).$
- (d) $\vec{e}_c = \frac{\vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{2}}(-1, 1).$
- (e) $\vec{a} \cdot \vec{e}_c = 1/\sqrt{2}$, $\vec{b} \cdot \vec{e}_c = -3/\sqrt{2}$, $(\vec{a} + \vec{b}) \cdot \vec{e}_c = -\sqrt{2}$.
- (f) Die Gleichung für α und β ist $\alpha \vec{a} + \beta \vec{b} = (\alpha + 3\beta, 2\alpha) = \vec{c} = (-1, 1)^T$. Wir müssen also das lineare Gleichungssystem

$$\alpha + 3\beta = -1$$
$$2\alpha = 1$$

lösen. Aus der zweiten Gleichung folgt $\alpha = 1/2$. Setzen wir das in die erste Gleichung ein, ergibt sich $\beta = -1/2$.

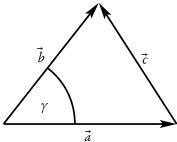
Aufgabe 2: Winkel im Skalarprodukt

Allgemein gilt

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \gamma,$$

wobei γ den von den Vektoren \vec{a} und \vec{b} eingeschlossenen Winkel bezeichnet.

- (a) $2(\vec{a} \cdot \vec{b}) = |\vec{a}| \cdot |\vec{b}| \Rightarrow \cos \gamma = 1/2 \Rightarrow \gamma = \pi/3$.
- (b) Wir zeichnen das Dreieck mit den Seiten als Vektoren:



Aus der Zeichnung liest man ab, dass $\vec{a} + \vec{c} = \vec{b}$ und also $\vec{c} = \vec{b} - \vec{a}$ ist. Daraus folgt

$$c^2 = \vec{c} \cdot \vec{c} = (\vec{b} - \vec{a})^2 = a^2 + b^2 - 2\vec{a} \cdot \vec{b} = a^2 + b^2 - 2ab\cos\gamma.$$

QED

(c) $|(\vec{a} \cdot \vec{b})| = |\vec{a}| \cdot |\vec{b}| \cdot |\cos \gamma| \le |\vec{a}| \cdot |\vec{b}|$.

Man kann die Cauchy-Schwarzsche Ungleichung auch rein algebraisch beweisen. Es ist klar, dass für $\vec{a} = 0$ oder $\vec{b} = 0$ die Ungleichung (mit dem Gleichheitszeichen) erfüllt ist. Seien also $\vec{a} \neq 0$ und $\vec{b} \neq 0$.

Dazu betrachten wir das quadratische Polynom

$$f(\lambda) = (\vec{a} + \lambda \vec{b})^2 = \vec{a}^2 + \lambda^2 \vec{b}^2 + 2\lambda \vec{a} \cdot \vec{b}, \quad \lambda \in \mathbb{R}.$$
 (1)

Da das Skalarprodukt positiv definit ist, d.h. es ist $f(\lambda) \ge 0$ für alle $\lambda \in \mathbb{R}$. Das bedeutet, es kann allenfalls ein doppelte reelle Nullstelle λ_0 geben.

Die Lösung der quadratischen Gleichung lautet nun

$$\lambda_{1/2} = -\frac{\vec{a} \cdot \vec{b}}{\vec{b}^2} \pm \frac{1}{\vec{b}^2} \sqrt{(\vec{a} \cdot \vec{b})^2 - \vec{a}^2 \vec{b}^2}.$$
 (2)

Damit es höchstens eine doppelte reelle Nullstelle gibt, muss der Ausdruck unter der Wurzel

$$(\vec{a} \cdot \vec{b})^2 - \vec{a}^2 \vec{b}^2 \le 0 \tag{3}$$

sein. Demnach ist also

$$|\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|,\tag{4}$$

und das war zu zeigen.

Weiter kann wegen der positiven Definitheit des Skalarprodukts $f(\lambda) = 0$ nur sein, wenn für ein $\vec{a} + \lambda \vec{b} = 0$ ist, d.h. wenn \vec{a} und \vec{b} linear abhängig sind.