Outline

1. Heavy-ion phenomenology
2. Theory of electromagnetic probes
 - The McLerran-Toimela formula
3. In-medium current-current correlator
 - Relation to chiral symmetry
 - QCD sum rules
4. Hadronic models for vector mesons
 - Chiral symmetry constraints
 - Vector-meson dominance model (hadronic part)
 - Realistic hadronic models for light vector mesons
 - Hadronic many-body theory (HMBT)
5. References
6. Quiz
Heavy-ion phenomenology
Heavy-ion collisions

- collisions of relativistic (heavy) nuclei
- many collisions of partons inside nucleons
- creation of many particles \Rightarrow hot and dense fireball
- formation of (thermalized) QGP?
- how to learn about properties of QGP?

\[\text{Au + Au} \quad \text{QGP ?!} \quad \text{Hadron Gas} \quad \text{“Freeze-Out”} \]
Phase diagram of strongly interacting matter

- hot and dense matter: quarks and gluons at high temperature
- high-energy collisions of quarks and gluons ⇒ “Deconfinement”
- quarks and gluons relevant degrees of freedom ⇒ Quark-Gluon-Plasma
- interactions still strong: fast thermalization!

![Phase diagram of strongly interacting matter](image)
Hydrodynamical radial flow of the bulk

- ideal fluid in local thermal equilibrium
- hydrodynamical model for ultra-relativistic heavy-ion collisions
 - after short formation time ($t_0 \lesssim 1 \text{ fm}/c$)
 - QGP in local thermal equilibrium \rightarrow hadronization at $T_c \simeq 160 - 190 \text{ MeV}$
 - chemical freeze-out: (inelastic collisions cease) $T_{ch} \simeq 160 - 175 \text{ MeV}$
 - thermal freeze-out: (also elastic scatterings cease)
Hydrodynamical behavior

- low-p_T particle spectra compatible with ideal-fluid (hydrodynamics) ⇒
 small shear-viscosity over entropy-density ratio, $\eta/s \simeq 1/(4\pi)$
- medium in local thermal equilibrium
 (after short formation time $\lesssim 1$ fm/c)
Hydrodynamical behavior

- successful description with relativistic ideal and viscous hydrodynamics

[SJG11]

Hendrik van Hees (GU Frankfurt/FIAS) Em. Probes in HICs II March 31-April 04, 2014 8 / 58
Constituent-quark-number scaling of v_2

- Elliptic flow scales with number of **constituent quarks**

$$v_2^{(\text{had})} (p_T^{(\text{had})}) = n_q v_2^{(q)} (p_T^{(\text{had})} / n_q)$$

- **recombination Quarks** in the medium at T_c

- meson and baryon $v_2 = \simeq$ sum of quark v_2's

[Hendrik van Hees (GU Frankfurt/FIAS)]

Em. Probes in HICs II
March 31-April 04, 2014 9 / 58
Jet quenching

- jets going through medium suppressed
- not seen in d+Au collisions ⇒ medium effect!
- suppression: medium of high density ⇒ $\rho > \rho_{\text{krit}}$
Jet quenching

comparison to pp collisions: \(R_{AA} = \frac{dN_{AA}/dp_t}{N_{coll}dN_{pp}/dp_t} \)

\(R_{AA} < 1 \) for large \(p_t \): jets absorbed by medium

photons (\(\gamma \)) nearly unsuppressed: medium transparent for photons

\(\gamma \) only electromagnetically interacting!
Jet quenching

- **comparison to pp collisions**:
 \[R_{AA} = \frac{dN_{AA}/dp_t}{N_{col}dN_{pp}/dp_t} \]

- \(R_{AA} < 1 \) for large \(p_t \): jets absorbed by medium

- **energy loss**: elastic scattering and radiation of gluons in QGP

- density of medium > \(\rho_{\text{crit}} \)!
QGP in HICs: “most sloshy liquid”?

- viscosity over entropy ratio: η/s
- measure for “perfectness” of a fluid
- from Heisenberg uncertainty relation (or AdS/CFT): $\eta/s \geq 1/(4\pi)$
Theory of electromagnetic probes
The McLerran-Toimela formula

- derivation of dilepton-production rate [MT85, GK91]

\[
\frac{dR_{\ell^+\ell^-}}{d^4k} = \frac{dN_{\ell^+\ell^-}}{d^4x \, d^4k}
\]

- radiation of dileptons from thermalized strongly interacting particles with total pair four-momentum \(k \)
- dileptons escape fireball without any final-state interactions
- calculation exact concerning strong interactions
- leading-order \(\mathcal{O}(\alpha^2) \) in QED
- implies assumption that leptons don’t suffer final-state interactions

\[
H_{\text{em}}^{\text{(int)}} = e \int d^3\vec{x} \, J_\mu(t,\vec{x})A^\mu(t,\vec{x}), \quad A^\mu(t,\vec{x}) = \frac{\varepsilon^\mu}{2\omega V} \exp(ik \cdot x)
\]

- \(J_\mu \): exact (wrt. strong interaction!) em. current operator of quarks or hadrons in the Heisenberg picture wrt. strong interactions
- \(e = \sqrt{4\pi\alpha}, \; \alpha \simeq 1/137 \)
The McLerran-Toimela formula

Fermi’s golden rule \Rightarrow transition-matrix element for process
$|i\rangle \rightarrow |f'\rangle = |f\rangle + |\ell^+ \ell^- (k)\rangle$

QED Feynman rules

$$S_{f'i} = \left< f \left| \int d^4 x \, J_\mu (x) \right| i \right> D^{\mu \nu}_{\gamma \nu} (x, x') e\overline{u}_\ell (x') \gamma_\nu v_\ell (x')$$
The McLerran-Toimela formula

- Fourier transformation: energy-momentum conservation $|f'\rangle = |f, \ell^+ \ell^- (k)\rangle$

$$S_{fi} = T_{fi} (2\pi)^4 \delta^{(4)}(P_f + k - P_i)$$

- Fermi’s trick: Rate

$$R_{f'i} = \frac{|S_{f'i}|^2}{\tau V} = (2\pi)^4 \delta^{(4)}(P_f + k - P_i) |T_{f'i}|^2$$

- summing over $|f\rangle$ and polarizations of dilepton states
- averaging over initial hadron states: heat bath (grand canonical)

$$\rho = \frac{1}{Z} \exp[-\beta (H_{QCD} - \mu_B Q_{baryon})]$$
The McLerran-Toimela formula

- result (derivation see \cite{GK91}, Appendices)

\[
\frac{dR_{\ell^+ \ell^-}}{d^4k} = -\frac{\alpha^2}{3\pi^3} \frac{k^2 + 2m_\ell^2}{(k^2)^2} \sqrt{1 - \frac{4m_\ell^2}{k^2}} g_{\mu\nu} n_B(k^0) \text{Im}\Pi_{\text{ret}}^{\mu\nu}(k)
\]

- em. current-current correlator

\[
i\Pi_{\text{ret}}^{\mu\nu}(k) := \int d^4x \exp(i k \cdot x) \langle [J^\mu(x), J^\nu(0)] \rangle_{T,\mu_B} \Theta(x^0)
\]

- written in (local) restframe of the medium

- in principle measureable: in linear response approximation Green’s function for lepton current running through medium

- \(k^2 = M^2 > 0 \) invariant mass of dilepton

- probing medium with photons: same correlator for \(k^2 = M^2 = 0 \)

- then correlator \(\Leftrightarrow \) dielectric function \(\varepsilon(\omega) \) in electrodynamics!
The McLerran-Toimela formula

- for real photons

\[\omega \frac{dR}{d^3k} = -\frac{\alpha g_{\mu\nu}}{2\pi^2} \text{Im} \Pi_{\text{ret}}^{\mu\nu}(k)n_B(k^0), \quad k^0 \omega = |\vec{k}| \]

- written in (local) restframe of the medium

- Phenomenological effective hadronic model: vector-meson dominance model

- em. current \(\propto V^\mu \) (with \(V \in \{\rho, \omega, \phi\} \))

\[\Sigma_{\mu\nu} = G_\rho \]

- Dilepton/photon rates: \(\propto A_V = -2 \text{Im} D_V^{\text{ret}} \)
 (vector-meson spectral function!)

- measuring in-medium vector-meson spectral function!?!
Em. current-current current correlator
Vector Mesons and electromagnetic Probes

- photon and dilepton thermal emission rates given by same electromagnetic-current-correlation function \((J_\mu = \sum_f Q_f \overline{\psi}_f \gamma_\mu \psi_f)\)

- McLerran-Toimela formula

- manifestly Lorentz covariant (dependent on four-velocity of fluid cell, \(u\))

- to lowest order in \(\alpha\): \(4\pi \alpha \Pi_{\mu\nu} \simeq \Sigma_{\mu\nu}^{(\gamma)}\)

- derivable from underlying thermodynamic potential, \(\Omega\)!
Vector and axial-vector mesons ↔ respective current correlators

\[\Pi_{V/A}^{\mu\nu}(p) := \int d^4 x \exp(ipx) \left\langle J_{V/A}^\nu(0)J_{V/A}^{\mu}(x) \right\rangle_{\text{ret}} \]

Ward-Takahashi Identities of \(\chi \) symmetry \(\Rightarrow \) Weinberg-sum rules

\[f_\pi^2 = - \int_0^\infty \frac{dp_0^2}{\pi p_0^2} [\text{Im} \Pi_V(p_0, 0) - \text{Im} \Pi_A(p_0, 0)] \]

Spectral functions of vector (e.g. \(\rho \)) and axial vector (e.g. \(a_1 \)) directly related to order parameter of chiral symmetry!
Vector Mesons and chiral symmetry

- at high enough temperatures and or densities: melting of $\langle \bar{q}q \rangle$
- \Rightarrow spontaneous breaking of chiral symmetry suspended
- \Rightarrow chiral phase transition; chiral-symmetry restoration (χ_{SR})
- which scenario is right? microscopic mechanisms behind χ_{SR}?

from [Rap03]

from [Rap05]
QCD Sum rules

- based on [LPM98]
- calculate current correlator, e.g., the vector part of the \(\text{em. current}\)

 \[
 j_\mu = \frac{1}{2} (\bar{u} \gamma_\mu u - \bar{d} \gamma_\mu d)
 \]

 corresponds to the \(\rho\) meson!

- use \(p\text{QCD}\) to determine correlator

 \[
 \Pi_{\mu\nu}(k) = \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \Pi(k^2)
 \]

 in deep spacelike region, \(Q^2 = -k^2 \gg \Lambda_{\text{QCD}}\)

- related to \(\text{time-like region} \Rightarrow \text{sum rule}\)

 \[
 \Pi(k^2) = \Pi(0) + c Q^2 + \frac{Q^4}{\pi} \int_0^\infty ds \frac{\text{Im} \Pi(s)}{s^2(s + Q^2 - i\epsilon)}
 \]

 dispersion relation: \(\text{spectral function} \ \text{Im} \Pi!\)
QCD Sum rules

- left-hand side of sum rule
- pQCD + chiral models for baryon-pion interactions [see, e.g., [DGH92]]

\[
R(Q^2) := \frac{\Pi(k^2 = -Q^2)}{Q^2} = -\frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) \ln \left(\frac{Q^2}{\mu^2} \right) \\
+ \frac{1}{Q^4} m_q \langle \bar{q}q \rangle + \frac{1}{24Q^4} \left\langle \frac{\alpha_s}{\pi} F^a_{\mu\nu} F^{a\mu\nu} \right\rangle - \frac{112}{81Q^6} \kappa \langle \bar{q}q \rangle^2
\]

- additional cold-nuclear matter contributions

\[
\Delta R(Q^2) = \frac{m_N}{4Q^4} A_2 \rho_N - \frac{5m_N^3}{12Q^6} A_4 \rho_N
\]

- \(A_{2,4} \) from parton-distribution functions
- also condensates medium-modified (in low-density approximation)

\[
\langle \bar{q}q \rangle = \langle \bar{q}q \rangle_{\text{vac}} + \frac{\sigma_N}{2m_q} \rho_N,
\]

\[
\left\langle \frac{\alpha_s}{\pi} F^a_{\mu\nu} F^{a\mu\nu} \right\rangle = \left\langle \frac{\alpha_s}{\pi} F^a_{\mu\nu} F^{a\mu\nu} \right\rangle_{\text{vac}} - \frac{8}{9} m_N^{(0)} \rho_N
\]
- Right-hand side of sum rule
- Use hadronic models to fit measured vector-current correlator
- E.g., ALEPH/OPAL data of $\tau \rightarrow \nu + 2n\pi$

Data: ALEPH at LEP
QCD Sum rules

- possible medium effects on ρ meson
 - dropping mass, unchanged/small width
 - unchanged mass, broadened spectrum (large width)
Scenarios for chiral symmetry restoration

- hadron spectrum must become degenerate between chiral partners

![Spectral Function Diagrams](image)

- models alone of little help (realization of χ_S not unique!)
 - “vector manifestation” $\rho_{\text{long}} = \chi$ partner of $\pi \Rightarrow$ dropping mass
 - “standard realization” $\rho = \chi$ partner of a_1,
 extreme broadening + little mass shifts

- theory “shopping list”
 - effective hadronic models (well constrained in vacuum!)
 - and concise evaluation in the medium!
 - models for fireball evolution
 (blast-wave parametrizations, hydro, transport, and transport-hydro hybrids)
 - must include partonic \rightarrow phase transition \rightarrow hadronic evolution

- precise $\ell^+\ell^- (\gamma)$ data from HICs mandatory!
Hadronic models
Effective hadronic models: chiral-symmetry constraints

- different realizations of chiral symmetry
- equivalent only on shell ("low-energy theorems")
- model-independent conclusions only in low-temperature/density limit (chiral perturbation theory) or from lattice-QCD calculations
- QCD sum rules: allow dropping-mass or melting-resonance scenario
- use phenomenological hadronic many-body theory (HMBT) to assess medium modifications of vector mesons
 - build models with hadrons as effective degrees of freedom
 - based on (chiral) symmetries
 - constrained by data on cross sections, branching ratios,... in the vacuum
 - in-medium properties assessed by many-body (thermal) field theory
Example: vector meson dominance model

- early model for **electromagnetic interaction** of charged pions \[\text{[Sak60, KLZ67, GS68, Her92, Hee00]}\]
- QED like U(1)-gauge model with massive vector meson for \(\rho_0\) and \(\pi^\pm\)
- Stückelberg: introduce auxiliary scalar field for free vector mesons:

\[
\mathcal{L}_\rho = -\frac{1}{4} V_{\mu \nu} V^{\mu \nu} + \frac{1}{2} m^2 V_\mu V^\mu + \frac{1}{2} (\partial_\mu \varphi)(\partial^\mu \varphi) + m \varphi \partial_\mu V^\mu
\]

- gauge invariant under local transformation

\[
\delta V_\mu (x) = \partial_\mu \chi (x), \quad \delta \varphi = m \chi (x)
\]

- Coupling to pions: **obey gauge invariance!** (like scalar QED)

\[
\mathcal{L}_\pi = (D_\mu \pi)^* (D^\mu \pi) - m^2 |\pi|^2 - \frac{\lambda}{8} |\pi|^4
\]

- \(D_\mu = \partial_\mu + ig V_\mu\); \(g\): \(\rho \pi \pi\) coupling
VMD model (photon part)

- add photons: \(D_\mu = \partial_\mu + igV_\mu + ieA_\mu \)
- Lagrangian for photons: usual (gauge fixed) QED
- additional direct \(\rho \gamma \) mixing \([KLZ67]\)

\[
\mathcal{L}_{\rho \gamma} = -\frac{e}{2g_{\rho \gamma}} V_{\mu\nu} A^{\mu\nu}
\]

- classical field equations: \(\Rightarrow \) electromagnetic current

\[
j^\nu_{\text{em}} = \partial_\mu A^{\mu\nu} = ie \left(1 - \frac{g}{g_{\rho \gamma}} \right) \pi \overset{\leftrightarrow}{D}^\nu \pi^* + \frac{e}{g_{\rho \gamma}} m^2 V^\nu + \frac{e^2}{g_{\rho \gamma}^2} \partial_\mu A^{\mu\nu}
\]

- for \(g_{\rho \gamma} = g \): \(j^\nu_{\text{em}} = \frac{e}{g} m^2 V^\nu + \mathcal{O}(e^2) \): \(\Rightarrow \) “vector-meson dominance”
VMD model (Feynman rules in Feynman gauge)

\[\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1) \]

\[\Theta_{\mu\nu}(p) = \eta_{\mu\nu} - p^\mu p^\nu / p \cdot p \]

\[\eta_{\mu\nu} = \frac{i}{p^2 - M^2 + i0^+} \]

\[\Theta_{\mu\nu}(p) = \frac{i}{k^2 + i0^+} \]

\[\Theta_{\mu\nu}(p) = \frac{i}{p^2 - m^2 + i0^+} \]

\[\Theta_{\mu\nu}(p) = \frac{i}{p^2 - m^c_0} \]

\[\Theta_{\mu\nu}(p) = -i \frac{\lambda}{8} \]

\[\Theta_{\mu\nu}(p) = -ie(q^\mu + r^\mu) \]

\[\Theta_{\mu\nu}(p) = ie\gamma^\mu \]

\[\Theta_{\mu\nu}(p) = ie^2 \eta_{\mu\nu} \]

\[\Theta_{\mu\nu}(p) = 2ieg\eta_{\mu\nu} \]

\[\Theta_{\mu\nu}(p) = -i \frac{e}{g'} p^2 \Theta_{\mu\nu}(p) \]
VMD model (ρ-self-energy and dressed $\gamma\pi\pi$ vertex)

- calculate ρ-self-energy (transversality from gauge invariance)

\[i\Pi_{\rho\pi\pi}^{\mu\nu}(p) = -\Theta_{\mu\nu}(p) \]

\[= is \Pi_{\rho\pi\pi}(s)\Theta^{\mu\nu}(p), \quad s = p^2 \]

- Dressed Green’s function

\[G_{\rho}^{\mu\nu}(p) = -\frac{\Theta^{\mu\nu}(p)}{p^2 - M^2 - p^2\Pi_{\rho\pi\pi}(p^2)} - \frac{\Lambda^{\mu\nu}(p)}{p^2 - M^2 + i0^+} \]

- dressed $\gamma\pi\pi$ vertex to $O(e)$

\[i\Gamma_{\gamma\pi\pi}^{\mu} = \]

\[= is \Pi_{\rho\pi\pi}(s)\Theta^{\mu\nu}(p), \quad s = p^2 \]
VMD model (em. form factor of the π)

- $\pi^+ + \pi^- \rightarrow e^+ + e^-$ ("time-like form factor")

\[i M_{fi} = \]

\[\Rightarrow |F(s)|^2 \text{ with Mandelstam } s = (p + q)^2 \]

- physical region $s > 4m_{\pi}^2$
- $\pi^+ + e^- \rightarrow \pi^+ + e^-$ ("space-like form factor")

\[i M_{fi} = \]

\[\Rightarrow |F(t)|^2 \text{ with Mandelstam } t = (p - p')^2 \]

- physical region $t < 0$
VMD model: (fit of parameters)

- best fit to form-factor data: $g = 5.461$, $g' = 5.233$, $m_\rho = 763.1$ MeV/c^2
- strict VMD: $g = g' = 5.328$, $m_\rho = 763.1$ MeV/c^2

Data from [A+86, BCE+85]
VMD model: (fit of parameters)

- best fit to form-factor data: \(g = 5.461, g' = 5.233, m_\rho = 763.1 \text{ MeV}/c^2 \)
- strict VMD: \(g = g' = 5.328, m_\rho = 763.1 \text{ MeV}/c^2 \)

![Graph showing |F|^2 vs M (GeV) with data points and fitted lines for Barkov et al, generalized VMD, and strict VMD.]

- small discrepancies around \(\rho \) peak: contribution from \(\omega(782) \) meson!
VMD (elastic $\pi\pi$ phase shift)

- $\pi\pi \rightarrow \pi\pi$ phase shift in $I = 1$ channel

$$\delta_1^1 = \arccos \frac{\text{Re} G_\rho}{|G_\rho|}$$

data: [FP77]
VMD: (total $\pi\pi$ elastic scattering cross section)

- $\pi\pi \rightarrow \pi\pi$ total cross section

\[\pi^+ + \pi^- \rightarrow \rho^0 + \pi^+ + \pi^- \]

\[\rho^0 \rightarrow \pi^+ + \pi^- \]

\[\rho^0 \rightarrow \pi^- + \pi^- \]

Data: [FP77]

Graph: σ_{tot} vs. \sqrt{s} [GeV]
Realistic hadronic models for light vector mesons

- CERES data: pion-ρ model too simplistic
- many approaches to more realistic models
 - gauged linear σ-model + vector-meson dominance [Pis95, UBW02]
 gauge-symmetry breaking \Rightarrow pions still in physical spectrum!
 - massive Yang-Mills model; gauged non-linear chiral model with explicitly broken
 gauge symmetry [Mei88, LSY95]
 - hidden local symmetry: Higgs-like chiral model [BK84, HY03, HY03]
 allows for vector manifestation or usual manifestation (with a_1)
- here we concentrate on the phenomenological model by Rapp, Wambach, et al [RW99]
Hadronic many-body theory

- Phenomenological HMBT [RW99] for vector mesons
- $\pi\pi$ interactions and baryonic excitations

Baryon (resonances) important, even at RHIC with low net baryon density $n_B - n_{\bar{B}}$

reason: $n_B + n_{\bar{B}}$ relevant (CP inv. of strong interactions)
The meson sector (vacuum)

- most important for \(\rho \)-meson: pions

\[
\begin{align*}
|F_{\pi}(q^2)|^2 &\quad q^2 [\text{GeV}^2] \\
\delta_1 [\text{deg.}] &\quad M_{\pi\pi} [\text{GeV}]
\end{align*}
\]
The meson sector (matter)

- Pions dressed with N-hole-, Δ-hole bubbles
- Ward-Takahashi \(\Rightarrow\) vertex corrections mandatory!
The meson sector (contributions from higher resonances)
The baryon sector (vacuum)

- $P = 1$-baryons: p-wave coupling to ρ:
 - $N(939)$, $\Delta(1232)$, $N(1720)$, $\Delta(1905)$

- $P = -1$-baryons: s-wave coupling to ρ:
 - $N(1520)$, $\Delta(1620)$, $\Delta(1700)$
Photoabsorption on nucleons and nuclei

\[\sigma_{N} \quad \text{[mb]} \]

\[\sigma_{A}^{\text{abs}} \quad \text{[mb]} \]

\(q_{0} \quad \text{[MeV]} \)

\(\gamma p/\gamma n \) averaged

N(1520)

N(1720)

Sn (Frascati)

Pb (Frascati)

Pb (Saclay)

U (averaged)
baryon effects important

- large contribution to broadening of the peak
- responsible for most of the strength at small M
In-medium spectral functions and baryon effects

- Im D_ω (GeV$^{-2}$) vs M (GeV)

[R. Rapp, J. Wambach 99]

- **baryon effects** important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M
In-medium spectral functions and baryon effects

- In-medium spectral functions
- Baryon effects important
 - Large contribution to broadening of the peak
 - Responsible for most of the strength at small M

[R. Rapp, J. Wambach 99]
In-medium spectral functions and baryon effects

- **baryon effects** important
 - large contribution to broadening of the peak
 - responsible for most of the strength at small M

[R. Rapp, J. Wambach 99]
Dilepton rates: Hadron gas \leftrightarrow QGP

- in-medium hadron gas matches with QGP
- similar results also for γ rates
- “quark-hadron duality”?
- hidden local symm.+baryons?

[BK84, HY03, Sas05, HS06]
Bibliography I

http://dx.doi.org/10.1016/0550-3213(86)90437-2

http://dx.doi.org/10.1016/0550-3213(85)90399-2

http://link.aps.org/abstract/PRL/v54/p1215

[FP77] C. D. Frogatt, J. L. Petersen, Phase-Shift Analysis of $\pi^+\pi^-$ Scattering between 1.0 and 1.8 GeV Based on Fixed Transfer Analyticity (II), Nucl. Phys. B 129 (1977) 89.

http://dx.doi.org/10.1088/0954-3899/35/10/104152

http://link.aps.org/abstract/PRD/v73/e036001

http://dx.doi.org/10.1016/S0370-1573(03)00139-X

http://link.aps.org/abstract/PR/v157/i5/p1376
http://dx.doi.org/10.1088/0954-3899/38/12/124047

http://dx.doi.org/10.1103/PhysRevLett.98.092301

http://dx.doi.org/10.1016/S0375-9474(97)00634-9

http://www.sciencedirect.com/science?_ob=GatewayURL&_origin=SPIRES&_method=citationSearch&_volkey=03702693%23341%2323407&_version=1&md5=05053a52e85b02fde34213175c490b2a

http://arxiv.org/abs/nucl-th/0409054

http://dx.doi.org/10.1007/s100500050364

http://dx.doi.org/10.1016/0003-4916(60)90126-3

http://dx.doi.org/10.1016/j.physletb.2011.06.065
http://dx.doi.org/10.1103/PhysRevLett.88.042002
Quiz
in the QCD phase diagram some points labeled “Heavy-Ion Experiments” are shown. How are those points “measured” or determined?

what indicates that there is a collective fluid-like behavior of the hot and dense medium created in HICs?

how do we explain the elliptic flow, v_2, of hadrons in HICs?

why do we believe that the QGP is really created in HICs and why do we think it’s the most perfect fluid ever observed?

which important “theoretical quantity” can be measured by observing electromagnetic probes in HICs (and elementary reactions)?

what is chiral-symmetry restoration and in which ways could it be realized in nature?

what can we learn from QCD sum rules about χSR?

what tell effective hadronic models about the medium modification of light vector mesons and the related χSR?

what’s basic assumption of the vector-meson dominance (VMD) model?

why is the simple $\pi\rho$ model insufficient to explain the dilepton data in HICs?

why are baryon-vector-meson interactions important even at high collision energies, where $\mu_B \simeq 0$ (nearly 0 net-baryon density)?