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1 The relativistic equation of motion

The non-relativistic equation of motion for a particle in a medium, taking into account the interaction
with the medium in terms of a linear friction-force law (“Stokes friction”) reads

˙⃗p = m ˙⃗v =−γ ( p⃗ −mV⃗ ) =−γm(v⃗ − V⃗ ) = γm(V⃗ − v⃗), (1)

where m is the mass of the particle, γ the friction coefficient, and V⃗ the velocity (field) of the medium.
To find the relativistic generalization of this force law, we start with the covariant description in terms
of the Minkowski force, Kµ:

d pµ

dτ
=Kµ, pµ = m

dxµ

dτ
(2)

with the proper time τ. This implies

pµ pµ = m2c2 = const (3)

and thus

pµ
d pµ

dτ
= pµKµ = mc uµKµ = 0. (4)

For the following we define

uµ =
1
c

dxµ

dτ
⇒ pµ = mc uµ, uµuµ = 1. (5)

The corresponding quantity of the fluid-flow field is

Uµ =
1
Æ

1− V⃗ 2/c2

�

1

V⃗ /c

�

. (6)

The non-relativistic equation (1) must hold in the limit |v⃗ |, |V⃗ | ≪ c . Together with the constraint (4)
this leads to the ansatz for the friction Minkowski force:

Kµ = mcγ [Uµ− (uνU
ν )uµ]. (7)

To check that this follows the usual conventions according to which the meaning of the “material con-
stant” γ should be defined in the (local) rest frame of the medium, we write down the equation of
motion in this frame, where (Uµ) = (1,0,0,0). For the spatial components one obtains

d p⃗
dτ
=−mcγ u0 u⃗ =−γ u0 p⃗. (8)
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The temporal component of the covariant equation of motion reads in this frame

d p0

dτ
= mc

du0

dτ
= mcγ [1− (u0)2] =−mcγ u⃗2, (9)

where in the final step we have used (u0)2 = 1+ u⃗2. From this one finds

d
dτ
(u0)2 = 2u0 du0

dτ
= 2u⃗ · d⃗u⃗dτ ⇒ du0

dτ
=

u⃗
u0
· du⃗

dτ
. (10)

Thus multiplying (8) with u⃗/u0 shows that (9) is fulfilled by the solution of (8), as it should be and is
guaranteed a priori by the constraint (4).
Since dτ = dt/u0, the three-dimensional (non-covariant) version of the equation of motion in the rest
frame of the medium reads

d p⃗
dt
=−γ p⃗, (11)

i.e., the friction coefficient as the usual meaning of the inverse relaxation time of the momentum of the
particle in this frame, i.e.,

p⃗(t ) = p⃗0 exp(−γ t ). (12)

For the position of the particle we find

dx⃗
dt
= ˙⃗x =
q

1− ˙⃗x2/c2
p⃗0

m
exp(−γ t ). (13)

Setting p⃗0 = p0 e⃗1 and x⃗0 = 0 as the initial condition we find x2 = x3 = 0= const and setting A= p0/m
from (13)

ẋ1 =
p

1− (ẋ1/c)2Aexp(−γ t ). (14)

Taking the square of (14) yields

ẋ1 =
Aexp(−γ t )
p

1+A2/c2 exp(−2γ t )
. (15)

Taking into account the initial condition x1(0) = 0 integration results in

x1(t ) =
c
γ

�

arsinh
�A

c

�

− arsinh
�A

c
exp(−γ t )
��

. (16)

The non-relativistic limit is found by assuming |A/c | ≪ 1 and arsinh x = x +O (x3):

x1(t ) =
A
γ
[1− exp(−γ t )] , (17)

which is the solution for the non-relativistic equation of motion

m ¨⃗x = m ˙⃗v =−mγ v⃗. (18)
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