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1 The relativistic equation of motion

The non-relativistic equation of motion for a particle in a medium, taking into account the interaction
with the medium in terms of a linear friction-force law (“Stokes friction”) reads
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where m is the mass of the particle, y the friction coefficient, and V the velocity (field) of the medium.

To find the relativistic generalization of this force law, we start with the covariant description in terms
of the Minkowski force, K#:
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with the proper time 7. This implies
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For the following we define
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The corresponding quantity of the fluid-flow field is
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The non-relativistic equation (1) must hold in the limit |7],|V| < c. Together with the constraint
this leads to the ansatz for the friction Minkowski force:
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To check that this follows the usual conventions according to which the meaning of the “material con-
stant” y should be defined in the (local) rest frame of the medium, we write down the equation of
motion in this frame, where (U#) =(1,0,0,0). For the spatial components one obtains
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The temporal component of the covariant equation of motion reads in this frame
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where in the final step we have used (#°)? = 1+ #%2. From this one finds
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Thus multiplying (8) with 7 /#° shows that {9) is fulfilled by the solution of 8), as it should be and is
guaranteed a priori by the constraint ().

Since dt = dt/u°, the three-dimensional (non-covariant) version of the equation of motion in the rest
frame of the medium reads
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i.e., the friction coefficient as the usual meaning of the inverse relaxation time of the momentum of the
particle in this frame, i.e.,

p(t)= poexp(—yt). (12)
For the position of the particle we find
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Setting py = poé; and Xy = 0 as the initial condition we find x? = x*> = 0 = const and setting A = p,/m

from
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Taking the square of (14) yields
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Taking into account the initial condition x!(0) = 0 integration results in
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The non-relativistic limit is found by assuming |4/c| < 1 and arsinhx = x + O(x*):
A
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which is the solution for the non-relativistic equation of motion
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