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1 Thermodynamical quantities

The grand-canonical partition sum for a relativistic Boltzmann gas is defined a{']
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We note that 8 = 1/T with T > 0 is the inverse temperature and @ = /7T with u € R the chemical

potential, and Z = N is the mean particle number of particles in volume, V.
Substitution of P = m cosh 7 leads to
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Since
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using (8) and (9] for v = 2) yields
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The internal energy is given by
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In the last step we have used (11).
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'We use the standard natural units of relativistic thermal field theory, i.e., 5 =c =k =0and (7,,) =

exp aK,(Bm).
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For the average energy per particle, we find
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The non-relativistic limit follows for 7 > T, using the asymptotic expansion (13):
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A The Modified Bessel Functions
We define the modified Bessel functions as the integrals
K, (z)= f dy cosh(vy)exp(—z coshy). ®)
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First we derive a recursion relation:
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This is shown by integrating (8) by parts, which gives
K /(z)= J dy sinh(vy)sinhy exp(—z coshy)
= J dy{cosh[(v+ 1)y]—cosh[(v—1)y} exp(—z coshy) (10)
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In a similar way we find for the derivative of the Bessel functions
dd K /(z f dy coshy cosh(vy)exp(—z cosh y)
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0

1 m VvK,(z)+zK,_
= [Koio) Ky ()] B0

Further we need the behavior of the functions for z > 1. To find the asymptotic behavior for z — oo
we can use the saddle-point approximation of the defining integral (8). To that end one writes the
integrand in the form
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Plugging this into (8) we find the first two terms of the asymptotic expansion
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