Tutorial "General Relativity"

Winter term 2016/2017

Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees

Sheet No. 1

will be discussed on Nov/01/16

1. Decay of the muon

Muons have been discovered while studying cosmic radiation at Caltech in the thirties of the last century. The muon is an unstable subatomic particle with a mean life time of $\tau \sim 2.2 \mu s$ (measured in its rest frame). Their decay via the weak interaction is described by

$$N(t) = N_0 \exp\left(-\frac{t}{\tau}\right),$$

where N(t) is the number of muons after the time t, and N_0 is the initial number at t = 0. They travel nearly with the speed of light, v = 0.998c.

- a.) What distance can a muon manage in its proper time¹?
- b.) Why does an observer on Earth measure a mean lifetime of around 34.8μ s. What distance would a muon travel in this time?
- c.) Suppose, that in 9 kilometers above sea level 10^8 muons were produced. How many of them reach the Earth's surface (non-relativistically)? Why does an observer detect nearly 42% of them nonetheless?

2. Addition of velocities

Given a particle in frame Σ , which is moving at $\vec{u} = \frac{3}{4}c\vec{e_1}$ to the right and another observer in frame Σ' , which is moving with $\vec{v} = -\frac{3}{4}c\vec{e_1}$ (i.e., to the left with respect to Σ). Why doesn't the observer in Σ' measure a total speed of $\frac{3}{2}c$ of the particle? What speed does he measure?

3. Arrow

An arrow of length 1 m has been shot. While passing your view, you measure a length of 86.6 cm. At what speed v travels the arrow?

4. Speed of a particle

If a particle's kinetic energy is n times its rest energy, what is its speed?

5. Lorentz invariance

Which of the following quantities is Lorentz-invariant (and which manifestly Lorentz co-variant)?

a.)
$$\vec{x}^2$$
 b.) $x_{\mu}x^{\mu}$ c.) $x^{\mu}x^{\nu}$ d.) $\eta_{\mu\nu}$ e.) ds^2 f.) $(dx^0)^2$ g.)
 γ

6. General rotation-free Lorentz boost

Find the rotation-free Lorentz-boost matrix $\Lambda^{\mu}{}_{\nu}$, $x'^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$ between two inertial frames Σ and Σ' , where Σ' moves with the speed \vec{v} wrt. to Σ ($|\vec{v}| < c$ in arbitrary direction).