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1. Newtonian limit

Find the relation between the geodesic equation and the Newtonian equation of motion for a
particle moving in a static gravitational field, i.e. show that Newtonian gravity can be described
by a metric of the form

ds2 =

[
1 +

2

c2
φ(~x)

]
c2dt2 − gjkdxjdxk (1)

where φ(~x) = −GM
r is the gravitational potential.

Hint: Use the ansatz gµν = ηµν +hµν(~x) with |hµν | � 1 for a weak static gravitational field in the
equations of motion for a freely falling particle and use the non-relativistic approximation of the
equations of motion,

d2~x

dt2
= −~∇φ(~x) (2)

to find the relation between h00 and φ.

Remark: Since in a static gravitational field ds2 should be time independent, it cannot change
under time reversal, t → −t, and thus g0j (j ∈ {1, 2, 3} = 0). Note that in this way, we cannot
make any further statement about the spatial components of the metric, gjk, in the non-relativistic
limit.

Solution: We can formally take GM as the small expansion parameter. From the non-relativistic
equation of motion we read off that ~̈x ∝ GM , and this is also the parametric dependence of ~̇x.
The equation of motion of the freely falling particle is the geodesics equation, which is most easily
found by the least-action principle with the Lagrangian

L =
1

2
gµν ẋ

µẋν , (3)

where the world-line parameter can be chosen as the proper time of the particle, so that

gµν ẋ
µẋν = c2. (4)

Since the velocities are small, we have dτ ' dt up to 2nd-order corrections in GM .

Now we look at the equations of motion, using the Euler-Lagrange equations. The canonical
momentum reads

pµ =
∂L

∂ẋµ
= gµν ẋ

ν , (5)

and thus the equations of motion

ṗµ = gµν ẍ
ν + ∂ρgµν ẋ

ρẋν
!

=
∂L

∂xµ
=

1

2
∂µgρν ẋ

ρẋν . (6)

Raising the index leads finally to

ẍσ =
1

2
gσµ∂µgρν ẋ

ρẋν − gσµ∂ρgµν ẋρẋν . (7)



Since ∂0gµν = 0 and for the spatial components ẋρ = O(GM) and ∂rgρν = O(GM) the 2nd term
on the right-hand side of Eq. (7) can be neglected, being of order O[(GM)2]. For the same reason
in the 1st term on the right-hand side in the sum over the indices ρ and ν only the term with
ρ = ν = 0 is of order O(GM), i.e., up to corrections of 2nd order in GM we have

ẍσ =
1

2
gσµ∂µg00ẋ

0ẋ0. (8)

Now since we can take the derivatives wrt. to τ in (8) to be derivatives wrt. to t to the same order
in GM , i.e., we can set ẋ0 = c and set gσµ ' ησµ. Thus we get

ẍσ =
c2

2
ησµ∂µg00. (9)

Now indeed for σ = 0, we get
ẍ0 = 0, (10)

because ∂0g00 = 0, and this is compatible with the power counting in GM , argued about above,
i.e., we have x0 ' ct+ const. For the spatial components we finally get

ẍs = −c
2

2
δsm∂mg00

!
= −δsm∂mφ, (11)

and this yields

g00 '
2

c2
φ+ const. (12)

If no matter is present, the spacetime must be described by the flat Minkowski spacetime, and thus
we have const = 1. So we finally have, in the non-relativistic limit

g00 ' 1 +
2

c2
φ, (13)

and this we had to show.

2. Schwarzschild solution with cosmological term

The cosmological constant has been added by Einstein as a fudge factor. At the time it was believed
that the universe was static. The Einstein equations however predict a dynamical universe. When
the observations of Hubble proved beyond reasonable doubt that the universe was expanding,
Einstein threw out the cosmological constant and claimed it to be “Die größte Eselei meines
Lebens”.

Recent observations seem to indicate that some sort of “vacuum energy” is at work, so that the
cosmological constant is coming back to style. The vacuum Einstein equations with a cosmological
constant read

Rµν −
1

2
Rgµν + Λgµν = 0 (14)

What is the influence (consequence) of Λ on the Schwarzschild solution outside the star? To this
purpose calculate the modified line element using the same ansatz as used in the lecture to derive
the Schwarzschild metric given as

ds2 = c2dt2 exp ν − dr2 expλ− r2(dϑ2 + dϕ2 sin2 θ) (15)

Is the asymptotic limit for r →∞ still a Minkowski space-time?

Solution: We can use the Einstein tensor from the lecture to derive the equations of motion for
the gravitational field. As in the case Λ = 0, we start with solving the equations for the 00- and
11-component:

G00 + Λg00 = exp ν

{
exp(−λ)

[
1

r2
− λ′

r

]
− 1

r2
+ Λ

}
!

= 0, (16)

G11 + Λg22 = −ν
′

r
− 1

r2
+

expλ

r2
− Λ expλ = 0. (17)



In (16) the expression within the curly bracket has to vanish. Since this is a linear differential
equation of motion for λ alone, it is easy to solve. It can be rearranged to

d

dr
[r exp(−λ)] = 1− Λr2, (18)

with the solution

exp(−λ) = 1− rS

r
− Λr2

3
. (19)

The integration constant is the same Schwarzschild radius as in the spacetime without cosmological
constant since close to the center we should get this limit, rS = 2GM/c2.

To find also the solution for ν we can work with (16) and (17) as in the case for Λ = 0: Multiplying
(16) by expλ and adding it to (17) yields again

ν ′ = −λ′ ⇒ ν = −λ+ ν0. (20)

Here, the integration constant has just the meaning of a constant factor in the 00-component of
the metric tensor, which can be eliminated by rescaling the time coordinate by this factor. So we
can set ν0 = 0 without loss of generality. Finally we arrive at the solution for the metric, which
we note in terms of the invariant length element,

ds2 =

(
1− rS

r
− Λr2

3

)
c2dt2 − dr2

1− rS
r −

Λr2

3

− r2(dϑ2 + sin2 ϑdϕ2). (21)

Remarks: As we see, for r →∞ the spacetime does not become asymptotically flat in this case.
This is understandable, because the term with the cosmological constant can be interpreted as a
special contribution to the energy-momentum tensor. In modern cosmology thus one refers to the
cosmological constant also as “dark energy”.

This issue is one of the greatest unsovled mysteries of contemporary physics. On the one hand
the cosmological constant can be interpreted as the value of the energy density of the quantum-
field theoretical vacuum of the Standard Model of elementary particle physics. On the other hand
this model contains the Higgs field as a scalar boson, which implies a quadratically divergent mass
renormalization term for the Higgs-particle mass. This term, when extrapolated to the huge energy
scale given by the “Planck mass”, leads to a huge cosmological constant.

On the other hand, accurate measurements of the fluctuations in the cosmic microwave background
and the relation between redshift and distance of far distant type-I supernovae (“Hubble diagram”)
leads to a cosmological constant that is by a factor of about 10122 smaller than expected from the
estimate from the interpretation as the vacuum energy density of the Standard Model!

Further, the cosmological constant in our universe is so small that there is no hint from the motion
of the planets around the Sun in our solar system and not even for the relative motion of galaxies
within galaxy clusters.

As we see from (21) the Schwarzschild solution with positive cosmological constant implies that
there is not only the horizon given by the Schwarzschild radius r < rs but also on a much larger
scale rc � rs. Indeed of r � rS the metric becomes singular for 1−Λr2

c/3 ' 0, i.e., at rc '
√

3/Λ.
This should be the order of the distance from the center, where the influence of the cosmological
constant should become visible by the motion of bodies around some center of mass detributions.
Since there’s nothing like this visible within our solar system we can deduce that rc � 1010 km.
Since one even does not see any influence of Λ on the relative motion of galaxies within galaxy
clusters leads to rc � 1023 km.


