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1. Barometric formula in General Relativity

In the lecture we have shown that an ideal fluid obeys the equation of motion,

Tαβ‖β =
1√
|g|

∂

∂xβ

[√
|g|(ε+ P )uαuβ

]
+ (ε+ P )Γαβνu

βuν − gαβ ∂P
∂xβ

= 0. (1)

Now consider an ideal fluid in a stationary gravitational field in hydrostatic (uj = 0 for j ∈
{1, 2, 3}) equilibrium. This case is relevant for the description of neutron stars, which have a
strong gravitational field and thus have to be treated within the General Theory of Relativity.

(a) Show that u0 = 1√
g00

.

Solution: Since uµu
µ = gµνu

µuν = g00(u
0)2 = 1 we immediately find u0 = 1/

√
g00.

(b) Explain, why the first term in (1) is identically zero.

Solution: The expression is summed over β. The term for β = 0 vanishes since by assump-
tion both the metric coefficients, the energy density, pressure, and the four-velocity are time
independent. For β ∈ {1, 2, 3} the expression vanishes, because then uβ = 0.

(c) Prove that the equation simplifies to a generalized barometric formula,

∂P

∂xβ
= −1

2
(ε+ P )

∂g00
∂xβ

1

g00
= 0, (2)

i.e., for the spatial components,

∂jP = −ε+ P

2
∂j(ln g00) for j ∈ {1, 2, 3}. (3)

Solution: For the remaining term of (1) we have

Γαµνu
µuν = Γα00(u

0)2
(a)
=

1

g00
Γα00. (4)

Further the Christoffel symbols are defined by

Γγµν := gγαΓαµν =
1

2
(∂µgγν + ∂νgγµ − ∂γgµν). (5)

For µ = ν = 0 the first two expressions in the bracket vanish, because ∂0gµν = 0 and thus

Γγ00 = −1

2
∂γg00. (6)

So contracting (1) with gγα, we find

∂γP = (ε+ P )Γγ00
1

g00

(6)
= − 1

2g00
∂γg00(ε+ P ) = −(ε+ P )

2
∂γ ln(g00). (7)



(d) Show that in the non-relativistic limit

~∇P = −%~∇φgrav, (8)

where φgrav denotes the Newtonian gravitational potential.

Solution: In the non-relativistic limit we have

g00 ' 1 +
2φgrav
c2

⇒ ln(g00) ' 2
φgrav
c2

. (9)

Since also ε ' ρc2 � P , where ρ is the mass density, we finally get the usual barometric
formula (8).

Note: To solve (1) or (8) one needs an equation of state and the assumption that the change of the
state due to the motion of the fluid is adiabatic (which is implied by the assumption of ideal fluid
dynamics, which is already used in the ansatz of the energy-momentum tensor in (1). A typical
equation of state is the polytrope,

P = Cρn, C, n = const. (10)

E.g., for an ideal gas of diatomic molecules (like N2 or O2 in the Earth’s atmosphere) one has
n = 1.4.

Close to the Earth we have in a Cartesian coordinate system (x, y, z)

φgrav = gz, (11)

and P = P (z). Using (10) then (8) leads to the ordinary differential equation,

P ′ = −
(
P

C

)1/n

g, (12)

i.e.,

gz = −
∫ P

P0

dP̃

(
C

P

)1/n

=
C1/nn

n− 1

(
P

1−1/n
0 − P 1−1/n

)
. (13)

With C = P0/ρ
n
0 we finally get

P = P0

(
1− n− 1

n

ρ0
P0
gz

)n/(n−1)
. (14)

2. Geodesics equation from ideal hydrodynamics

In this problem we want the show that the equations of motion for free fall leads to the equation
for (timelike) geodesics via hydrodynamics of an ideal fluid. The generally covariant equations of
motion of an ideal fluid is given by the local conservation of energy and momentum, i.e.,

Tµν‖ν = 0 (15)

for the energy-momentum tensor

Tµν = (ε+ P )uµuν − Pgµν , (16)

with the energy density ε, pressure P , and four-velocity field uµ normalized such that uµu
µ = 1.



(a) Show that
uµ‖νuµ = 0. (17)

Solution: Since uµuµ = 1 and due to the product rule for partial derivativs we find

(uµuµ)‖ν = ∂ν(uµuµ) = 0 = uµ‖νuµ + uµuµ‖ν = 2uµ‖νuµ ⇒ uµ‖νuµ = 0. (18)

In the first step we have used that the covariant derivative of a scalar is just the partial
derivative, and in the last step we have used the Ricci theorem according to which all covariant
derivatives of the metric vanish, i.e.,

uµuµ‖ν = uµ(uρgρµ)|‖ν = uµ(uρ‖νgρµ + uρgρµ‖ν) = uµgρµu
ρ
‖ν = uρu

ρ
‖ν . (19)

(b) Show from (15) and the contraction of the equation with uµ that

(ε+ P )uµ‖νu
ν = (gµν − uµuν)P‖ν . (20)

Solution: Since the product rule holds for covariant derivatives, we have

Tµν‖ν = (ε+ P )‖νu
µuν + (ε+ P )uµuν‖ν + (ε+ P )uµ‖νu

ν − P‖νgµν − Pg
µν
‖ν

= uµ[(ε+ P )uν ]‖ν + (ε+ P )uµ‖νu
ν − P‖νgµν = 0,

(21)

where we have again used Ricci’s theorem.

Contracting with uµ and using uµu
µ = 1 and (17) gives

[(ε+ P )uν ]‖ν − uνP‖ν = 0. (22)

Substitution of this in the first term of (21) gives

−(gµν − uµuν)P‖ν + (ε+ P )uµ‖νu
ν = 0, (23)

which is (20).

(c) For “dust”, i.e., a fluid consisting of non-interacting particles, which means that P = 0, this
obviously implies that

uµ‖νu
ν = 0. (24)

Show that this implies that the flow lines, i.e., the trajectories of the dust particles, are
geodesics.

Hint: The flow lines are defined by the differential equation

dxµ

ds
= uµ. (25)

Solution: We write out the covariant derivatives in (24)

uν(∂νu
µ + Γµνρu

ρ) = 0. (26)

Now substituting uν = dxν/ds in the first term gives with the chain rule

d

ds
uµ + Γµνρu

νuρ = 0. (27)

Subsituting uµ = dxµd/s everywhere finally yields the equations for geodesics,

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0. (28)

Note: The results show that energy-momentum conservation for freely falling particles implies that
they follow (timelike) geodesics of spacetime, as is also implied by the (weak) equivalence principle
used in the lecture to motivate the description of gravity as the curvature of a non-Euclidean
spacetime manifold.

According to (20) the flow lines of a free falling ideal fluid are no geodesics, but on the fluid particles
an additional force is acting due to its pressure.


