Tutorial "General Relativity"

Winter term 2016/2017

Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees

Sheet No. 1 – Solutions

will be discussed on Nov/04/16

1. Decay of the muon

Muons have been discovered while studying cosmic radiation at Caltech in the thirties of the last century. The muon is an unstable subatomic particle with a mean life time of $\tau \sim 2.2 \mu s$ (measured in its rest frame). Their decay via the weak interaction is described by

$$N(t) = N_0 \exp\left(-\frac{t}{\tau}\right),\,$$

where N(t) is the number of muons after the time t, and N_0 is the initial number at t = 0. They travel nearly with the speed of light, v = 0.998c.

a.) What distance can a muon manage in its proper time¹?

Solution: With the speed of light $c = 2.99792458 \cdot 10^8 \text{ m/s}$ one finds for the distance travelled in the proper lifetime of the muon $x = \beta c\tau \simeq 658.2 \text{ m}$.

b.) Why does an observer on Earth measure a mean lifetime of around 34.8μ s. What distance would a muon travel in this time?

Solution: In the Earth frame the lifetime of the muon is increased by the Lorentz factor ("time dilation"): $\tau_{\text{Earth}} = \gamma = \tau / \sqrt{1 - \beta^2} \simeq 34.8 \ \mu\text{s}$. In this time the travelled distance is $\beta c \tau_{\text{Earth}} \simeq 10.4 \text{ km}$.

c.) Suppose, that in 9 kilometers above sea level 10^8 muons were produced. How many of them reach the Earth's surface (non-relativistically)? Why does an observer detect nearly 42% of them nonetheless?

Solution: The time it takes for the muon to travel to sea level is $t_{\text{Earth}} = 9 \cdot 10^3 \text{ m}/(\beta c) \simeq 30.1 \,\mu\text{s}$, and the number of muons expected to reach the surface of the Earth is $N_{\text{nrel}} = N_0 \exp(-t_{\text{Earth}}/\tau) \simeq 115$. Correctly one has to take into account the dilation of the muon's lifetime, and thus $N_{\text{rel}} = N_0 \exp(-t_{\text{Earth}}/\tau_{\text{Earth}}) \simeq 0.42 \cdot 10^8$.

2. Addition of velocities

Given a particle in frame Σ , which is moving at $\vec{u} = \frac{3}{4}c\vec{e_1}$ to the right and another observer in frame Σ' , which is moving with $\vec{v} = -\frac{3}{4}c\vec{e_1}$ (i.e., to the left with respect to Σ). Why doesn't the observer in Σ' measure a total speed of $\frac{3}{2}c$ of the particle? What speed does he measure?

Solution: We use Lorentz vectors in the (01) plane of Minkowski space. The proper velocity is

$$U = \gamma_u \begin{pmatrix} 1\\ \beta_u \end{pmatrix},\tag{1}$$

¹Eigenzeit

and the boost to the frame Σ' is given by the Lorentz-boost matrix

$$\hat{\Lambda} = \hat{B}(-v) = \gamma_v \begin{pmatrix} 1 & \beta_v \\ \beta_v & 1 \end{pmatrix},$$
(2)

i.e., the proper velocity in Σ' is

$$U' = \hat{\Lambda} U = \gamma_u \gamma_v \begin{pmatrix} 1 + \beta_u \beta_v \\ \beta_u + \beta_v \end{pmatrix}, \tag{3}$$

and thus the three-velocity of the particle with respect to Σ' is given by

$$u' = \frac{U'^q}{U'^0} = \frac{\beta_u + \beta_v}{1 + \beta_u \beta_v}.$$
(4)

For the values $\beta_u = \beta_v = 0.75$ one finds $\beta'_u = 0.96$.

3. Arrow

An arrow of length 1 m has been shot. While passing your view, you measure a length of 86.6 cm. At what speed v travels the arrow?

Solution: If the length is measured in the frame, where the arrow moves with a speed $v = \beta c$, it appears shorter by an inverse Lorentz factor, i.e.,

$$L_{\rm lab} = \frac{L_{\rm proper}}{\gamma} = \sqrt{1 - \beta^2} L_{\rm proper}$$
(5)

Solved for β we get

$$\beta = \sqrt{1 - \left(\frac{L_{\text{lab}}}{L_{\text{proper}}}\right)^2} \simeq 0.5.$$
(6)

4. Speed of a particle

If a particle's kinetic energy is n times its rest energy, what is its speed?

Solution: The kinetic energy of a relativistic particle is given by

$$T = mc^2(\gamma - 1),\tag{7}$$

where m is the invariant mass of the particle. Setting $T = nmc^2$ we get

$$\gamma = n+1 \Rightarrow \beta = \sqrt{1 - \frac{1}{(n+1)^2}} = \frac{\sqrt{n(n+2)}}{n+1}.$$
 (8)

5. Lorentz invariance

Which of the following quantities is Lorentz-invariant (and which manifestly Lorentz covariant)?

a.)
$$\vec{x}^2$$
 b.) $x_{\mu}x^{\mu}$ c.) $x^{\mu}x^{\nu}$ d.) $\eta_{\mu\nu}$ e.) ds^2 f.) $(dx^0)^2$ g.)
 γ

Solution: a.) is the magnitude of a three-vector which is frame dependent; b.) $x_{\mu}x^{\mu} = \eta_{\mu\nu}x^{\mu}x^{\nu}$ is invariant since it is a Minkowski product of a four-vector with itself; c.) $x^{\mu}x^{\nu}$ are the contra-variant components of a 2nd-rank Lorentz tensor; d.) $\eta_{\mu\nu}$ are the invariant components of the Lorentz metric, because for a Lorentz-transformation matrix one has $\eta'_{\rho\sigma} = \eta_{\mu\nu}\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma} = \eta_{\rho\sigma}$; e.) $ds^2 = \eta_{\mu\nu}dx^{\mu}dx^{\nu}$ is Lorentz invariant since it's the Minkowski product of a four-vector with itself, f.) $(dx^0)^2$ is neither invariant nor covariant; g.) γ is not invariant, because it's the time component of the proper velocity $U^{\mu} = \gamma(1, \vec{v})$ of a particle with three-velocity \vec{v} .

6. General rotation-free Lorentz boost

Find the rotation-free Lorentz-boost matrix $\Lambda^{\mu}{}_{\nu}$, $x'^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$ between two inertial frames Σ and Σ' , where Σ' moves with the speed \vec{v} wrt. to Σ ($|\vec{v}| < c$ in arbitrary direction).

Solution: For a boost in 1-direction (Σ' moves with three-velocity $\vec{v} = \beta c \vec{e_1}$ relative to Σ) one has

$$x^{\prime 0} = \gamma_v (x^0 - \beta x^1), \quad x^{\prime 1} = \gamma_v (x^1 - \beta x^0), \quad x^{\prime 2} = x^2, \quad x^{\prime 3} = x^3.$$
(9)

Since for an inertial observer the space is homogeneous and isotropic, we get the boost in a general direction by writing this in a rotation-kovariant form, i.e.,

$$x^{\prime 0} = \gamma_v (x^0 - \vec{\beta} \cdot \vec{x}), \quad \vec{x}^{\prime} = \gamma_v \vec{x}_{\parallel} + \vec{x}_{\perp} - \gamma_v \vec{\beta} x^0, \tag{10}$$

where the components of the position vector \vec{x} parallel and perpendicular to the relative velocity of the frames are

$$\vec{x}_{\parallel} = \frac{\vec{\beta} \cdot \vec{x}}{\beta^2} \vec{\beta}, \quad \vec{x}_{\perp} = \vec{x} - \vec{x}_{\parallel}, \tag{11}$$

respectively, and thus we get

$$\vec{x}' = \vec{x} + (\gamma - 1)\frac{\vec{\beta} \cdot \vec{x}}{\beta^2}\vec{\beta} - \gamma_v \vec{\beta} x^0.$$
(12)

So the general rotation-free Lorentz boost reads (in (1+3)-notation)

$$\hat{\Lambda} = (\Lambda^{\mu}{}_{\nu}) = \hat{B}(\vec{\beta}) = \begin{pmatrix} \gamma & -\gamma \vec{\beta}^{\mathrm{T}} \\ -\gamma \vec{\beta} & \mathbb{1}_{3\times 3} + (\gamma - 1) \frac{\vec{\beta} \vec{\beta}^{\mathrm{T}}}{\beta^2} \end{pmatrix}.$$
(13)