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General Relativity and
Quantum Cromodynamics
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The QCD- Phase Diagram I

The QCD phase diagram at
temperature T and net baryon
density is displayed on the right
side.
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The QCD- Phase Diagram II
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The QCD — Phase Transition

The appearance of the QCD - phase transition (the transition from
confined hadronic to deconfined quark matter) will change the properties
of neutron stars. Whether this change will be visible with telescopes and
gravitational wave antennas depends strongly on the equation of state of
hadronic and quark matter and on the construction of the phase transition.
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The Compact Star Z.00

Depending on the model used, the compact star zoo consists of different
inhabitants: e.g. neutron stars with and without hyperons, quark stars and strange
quark stars, hybrid stars with color superconducting quark matter, hybrid stars
with Bose-Einstein condensates of antikaons.

Hybrid Stars Quark Stars Black Holes

Pe = PO ~ 2 po ~ 9 po

Central density p. in the star
(po := 0.15/fm?)




Neutron Stars (NS)
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Neutron Star Matter

B/A [MeV]

additional conditions:

1) Charge Neutrality

3) Strangeness production
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Particle Composition inside a NS

Relative particle composition in f Chiral
dependence of the baryonic i b
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Neutron Star Properties

The neutron star radius as a function of its mass. A
low, middle and high density star is displayed within
the figure. Additionally the onset of hyperonic

particles is visualized.
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different central
densities and
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density stars do not
contain any
hyperons, whereas
the other two stars
do have hyperons
in their inner core.

Time-time
component of the
metric tensor as a
function of the
radial coordinate.
The solid line
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inner TOV-solution,
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Hybrid Stars

To describe the properties of the Hadron-Quark phase transition happening in
Hybrid stars an effective model for the quark phase is needed:
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A hybrid model of a compact star is realized by a construction of a phase

transition between a hadronic model and a quark model. In contrast to the Maxwell

~ construction of a phase transition, in a Gibbs construction a mixed phase is present in
the stars interior, where both phases co-exist. In the mixed phase transition region
each phase has a charge; only the overall electrical charge density vanishes. In the
mixed phase, the pressure of the hadronic matter has to be equal to the pressure of
the quark phase, whereas the particle and energy densities differ.

M. Hanauske, L.M. Satarov, I.N. Mishustin, H. Stcker, and W. Greiner, Phys. Rev. D 64, 043005 (2001)




The Gibbs Construction

Since the charge neutrality condition is only PH(pup,pe) = P%us, pie),
globally realized, the pressure depends on up = ufl = 49

two independently chemical potentials, the i B
baryonic and charge chemical potential: e = ftg = pd

Charge density neutrality condition:  Pe -= (1- X)PE(MB, te) + XP?(MB, pe) = 0.

Overall baryonic density: pp = (1—x) Pg(ﬂB, fe) + XP%(MB, He) ,
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The Gibbs Construction

Hadronic and quark surface: Particle composition: ., _ . v
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Hybrid Star Properties

Mass-Radius relations within two different hybrid star models. In both models the
MIT-Bag model was used for the quark phase, whereas for the hadronic phase,
the chiral hadron model (left figure) and the NLZY-model (right figure) was used.
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The Twin Star Collapse

Usually it is assumed that this loss of (@
! R ! U U

stability leads to the collapse into a 1.385

black hole. However, realistic 138

calculations open another possibility: La7s
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second sequence. A star from the first e

sequence which reaches the maximum =

mass (point A) will collapse to its twin =P A AU~ 0007
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I.N. Mishustin, M. Hanauske, A. Bhattacharyya, L.M. Satarov, H. Stdcker, and W. Greiner, “Catastrophic rearrangement of
a compact star due to quark core formation”, Physics Letters B 552 (2003) p.1-8




Density profiles of the two twins
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The Maxwell Construction

If the surface tension between the hadron and quark phase is relatively large, the
mixed phase could completely disappear, so that a sharp boundary between the
two phase appears. The Hadron-quark phase transition is then described using a

Maxwell construction. Pressure and baryon chemical potential stays

constant, while the density and the charge
chemical potential jump discontinuously during
the phase transition.
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Hybrid Star Properties

In contrast to the Gibbs construction, the star’s density profile within the Maxwell
construction (see middle figure) will have a huge density jump at the phase transition
boundary. Twin star properties can be found more easily when using a Maxwell
construction (see left and right figure).
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Exotic Stars

But, unfortunately, twin stars can not be created solely by a Hadron-Quark phase
transition. Extremely bound hyperon mater, or kaon condensation could also form a
twin star behaviour.
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The Spin Up Effect

A rotating neutron star slowly loses its energy and angular momentum through electromagnetic
and gravitational radiation with time. However, it conserves the total baryon number during this
evolution. The Figures below show results of uniformly rotating compact stars including a
Bose-Einstein condensates of antikaons. The Figure on the right shows the behavior of angular
velocity with angular momentum. The mass shedding limit sequence is shown by a light solid
line. The stable parts of the normal and supramassive sequences are displayed by dark solid
lines and the unstable parts by dotted lines. Curve II indicates a collapse of a neutron star to an
exotic star belonging to the third family of compact stars.
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Relativistic Hydrodynamics and
Numerical General Relativity

A realistic numerical simulation of a twin star
collapse, a merger of two compact stars or a
collapse to a black hole, needs to go beyond a
static, spherically symmetric TOV-solution of
the Einstein- and Hydrodynamical equations.
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All figures and equations from: Luciano Rezzolla, Olindo Zanotti: Relativistic Hydrodynamics, Oxford Univ. Press, Oxford (2013)



The ADM equations

The ADM (Arnowitt, Deser, Misner) equations come from a reformulation of the Einstein
equation using the (3+1) decomposition of spacetime.
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From ADM to BSSNOK

Unfortunately the ADM equations are only weakly hyperbolic (mixed derivatives in
the three dimensional Ricci tensor) and therefore not "well posed”. It can be shown
that by using a conformal traceless transformation, the ADM equations can be
written in a hyperbolic form. This reformulation of the ADM equations is known as
the BSSNOK (Baumgarte, Shapiro, Shibata, Nakamuro, Oohara, Kojima)
formulation of the Einstein equation. Most of the numerical codes use this (or the
CCZ4) formulation.

The 3+1 Valencia Formulation of the
Relativistic Hydrodynamic Equations

» "equations (the conservation of rest mass and energy-momentum)
converge to the right solution, they need to be reformulated into a

* | conservative formulation. Most of the numerical “hydro codes”
use here the 3+1 Valencia formulation.

Vp (pu“) — 0 To guarantee that the numerical solution of the hydrodynamical
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Mergers of two Hybrid Stars

One of the planned project deals with the numerical simulation of a hybrid star merger.
During the merger process the mixed and probable also the pure quark phase is present in
the inner core of the hypermassive compact star. The frequency spectrum of the emitted
gravitational wave reflects some of the properties of the equation of state (see presentation
by Filippo Galeazzi and Kentaro Takami on Friday). Whether a Hadron-Quark phase
transition is present during merger should be visible using gravitational wave detectors.
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Simulations done by Kentaro Takami




Mergers of two Neutron Stars

Time t=26.5 [ms]
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Mergers of two Neutron Stars

Time t=34.2 [ms]

Simulations done by Kentaro Takami



Mergers of two Neutron Stars

Time t=38.9 [ms]

Simulations done by Kentaro Takami



Mergers of two Neutron Stars

Time t=46.2 [ms]

Simulations done by Kentaro Takami



Mergers of two Neutron Stars

Time t=52. [ms]

Simulations done by Kentaro Takami



Mergers of two Neutron Stars

Time t=58.9 [ms]

Simulations done by Kentaro Takami



Mergers of two Neutron Stars

Time t=61.9 [ms]
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Mergers of two Neutron Stars
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Mergers of two Neutron Stars

Time t=63.2 [ms]
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Collapse Scenario of a Hybrid Star

Event
Horizon

r=2M

The gravitational collapse of a hybrid
star to a black hole is visualized on the
right side within a space-time diagram
of the Schwarzschild metric in
advanced Eddington-Finkelstein
coordinates.

1

At equal time intervals
emitted light rays

Such a dynamical collapse could
happen if a hybrid star reaches its
maximum mass limit or during the
final stages of a neutron star — neutron
star collision after the formation of the
hypermassive compact star.

M. Hanauske, Dissertation: "Properties of Compact Stars within QCD-motivated Models" ;
University Library Publication 2004 (urn:nbn:de:hebis:30-0000005872)
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