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Binary Neutron Star Systems

The Double Pulsar (PSR J0737-3039A/B): 

Observed in 2003

Eccentricity: 0.088

Pulsar A:  P=23 ms, M=1.3381(7)

Pulsar B: P=2.7 s, M=1.2489(7)

Only separated 800,000 km from each other

Orbital period: 147 Minuten

Pulsar A is eclipsed by Pulsar B 

(30 s for each orbit)

Distance shrinks 

due to Gravitational Wave emission

→ They will collide in 85 Million Years!

McGill NCS Multimedia Services Animation by Daniel Cantin, DarwinDimensions)

Kramer, Wex, Class. Quantum Grav. 2009



General Relativity
The Einstein equation

In 1915: Albert Einstein presented his
„Theory of General Relativity “ (GR)

GR has been a revolutionary theory in physics: Sie besagt, dass jegliche Energieformen (z.B. 
Masse der Erde) die „Raumzeit“ verbiegen und durch diese Krümmung des Raumes und der 
Zeit  resultiert die Gravitationkraft (Schwerkraft). 

Curvature of Spacetime =       Energy

M
m



Gravitative Zeitdilatation

Den Effekt der Zeitverbiegung kann man heutzutage sogar auf der Erde 
nachweisen -> Uhren ticken in den Bergen ein wenig schneller als im Tal.

2018 auf www.spektrum.de



Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften



Erste Gravitationswelle im Jahr 2015 gefunden!! 

Credit: Les Wade from Kenyon College.

Kollision zweier 
Schwarzer Löcher GW150914

Massen: 36 & 29 Sonnenmassen

Abstand zur Erde 410 Mpc
(1.34 Milliarden Lichtjahre)

Längen – Differenz < 𝟏𝟎−𝟏𝟖 m

LIGO Gravitationswellen Detektor



Physik Nobel Preis 2017



The long awaited event  GW170817

Gravitationswelle einer 
Neutronenstern Kollision gemessen!

17. August 2017



Gravitational Wave GW170817 and Gamma-Ray Emission GRB170817A



GW170817

Kilonova
observed
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Die Schwarzschild Lösung

1915 Einsteins Gravitation: 
Krümmung der „Raumzeit“

1916 Karl Schwarzschild:
… geboren 1873 in Frankfurt nahe dem Haus der 
Rothschild‘s. Erste Lösung der ART – drei Monate 
nach Einsteins Artikel! Aussenraummetrik eines 
nichtrotierenden schwarzen Loches. 

Schwarzschild stirbt einen Monat später an einer 
Infektion die er sich an der russischen Front 
einfing…



Schwarze Löcher und der Raumzeit-Trichter

Buco Nero
Grenzwert der Krümmung: Stabile Objekte (Neutronensterne) sind nicht mehr möglich

Wir sind über den 
Grenzwert 
gekommen und 
haben ein schwarzes 
Loch erzeugt!

M: Masse des Objektes
R: Radius des Objektes
gtt: Metrik der Raumzeit



Raumzeit-Diagramm eines schwarzen Loches
Sichtweise ruhender Beobachter im Unendlichen

Ereignis-

horizont

Raumzeit-Struktur 
im flachen Raum 

Raumzeit-Struktur um ein schwarzes Loch 



Raumzeit-Diagramm eines schwarzen Loches
Sichtweise eines in das schwarze Loch fallenden Beobachters



Der Ereignishorizont eines Schwarzen Loches



Das Bildnis des schwarzen Loches
(die wohl beste Veranschaulichung der wesentlichen Eigenschaften eines schwarzen Loches)

Der Raumzeit-Tricher
im Reichstagsgebäude



Das Bildnis des schwarzen Loches 
(die wohl beste Veranschaulichung der wesentlichen Eigenschaften eines schwarzen Loches)



Das Bildnis des schwarzen Loches
(die wohl beste Veranschaulichung der wesentlichen Eigenschaften eines schwarzen Loches)

Der Aufzug im Reichstagstagsgebäude befindet sich ca. bei 3/2*Rs



Weiteres siehe: http://th.physik.uni-frankfurt.de/~hanauske/new/LateralThougts.html

http://th.physik.uni-frankfurt.de/~hanauske/new/LateralThougts.html


Rotierende schwarze Löcher



Wie sieht das schwarze Loch im Zentrum unserer Galaxie aus?

Das EU-Projekt BlackHoleCam
L.Rezzolla, H.Falke und M.Kramer

Black hole cam is a European funded project, which is a partner 
in the Event Horizon Telescope and not a separate network! 



Das Bildnis des schwarzen Loches
(wie wird das wirkliche Bildnis des schwarzen Loches im Zentrum der Milchstrasse aussehen?)

Simulationen 
erstellt von 

Dr. Ziri Younsi



Die ersten Bilder eines Schwarzen Lochs

Anlässlich der bahnbrechenden Aufnahme des ersten Bildes eines schwarzen Lochs im Zentrum unserer Nachbargalaxie M87, 
wurde am 17. April 2019 um 20 Uhr ein öffentlicher, populärwissenschaftlicher Abendvortrag im Otto Stern Zentrum (OSZ H1) 
am Campus Riedberg der Goethe Universität gehalten. Es sprachen die drei Principal Investigators des europäischen Black 
Hole Cam-Projekts (L.Rezzolla, M.Kramer und H.Falke).

Ein wenig mehr als hundert Jahre 
nachdem Albert Einstein seine 
Feldgleichungen der Allgemeine 
Relativiätstheorie der Öffentlichkeit 
präsentierte, und er damit die 
Grundlage für Gravitationswellen und 
schwarzer Löcher formulierte, ist seit 
einigen Wochen ein Meilenstein in der 
Geschichte der Astronomie in aller 
Munde (erstes Bild eines schwarzen 
Lochs, siehe rechte Abbildung). 

YouTube Video:  https://www.youtube.com/watch?v=Zh5p9Sr0_VU&list=PLn5gYfEKIag8nps1GKLqUW35AOgQY7aM2



The Einstein Equation and Neutron Stars

EOS:  P (ρ , T )



Die Zustandsgleichung der Materie
und das Quark-Gluon-Plasma

Image from http://inspirehep.net/record/823172/files/phd_qgp3D_quarkyonic2.png



The QCD – Phase Transition and the Interior of a Hybrid Star

Center of the StarSurface of the Star

See: Stable hybrid stars within a SU(3) Quark-Meson-Model,
A.Zacchi, M.Hanauske, J.Schaffner-Bielich, PRD 93, 065011 (2016)



Neutronensterne, Quarksterne und schwarze Löcher

Bei welcher Dichte der Phasenübergang zum Quark-Gluon-Plasma einsetzt und welche Eigenschaften dieser
Übergang im Detail hat ist weitgehend unbekannt. Theoretische Modellierung mittels unterschiedlicher

effektiver Elementarteilchenmodelle.
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The equations of numerical relativity

In GR these equations do not possess an analytic 

solution in the nonlinear regimes we are interested in



3+1splitting of spacetime



First step: foliate the 4D spacetime

Given a manifold      describing a spacetime with 4-metric       we 

want to foliate it via spacelike, three-dimensional hypersurfaces, i.e.,                 

leveled by a scalar function. The time coordinate t is an obvious 

good choice.
Define therefore

such that

This defines the ”lapse” function which is 

strictly positive for spacelike hypersurfaces 



ii) define the spatial metric

where

i) define the unit normal vector to the hypersurface

The lapse function allows then to do two important things:



provide two useful tools to decompose any 4-dim. 

tensor into a purely spatial part (hence in ) and a purely timelike

part (hence orthogonal to    and aligned with ).

while the timelike part is obtained after contracting with the timelike

projection operator

where the two projectors are obviously orthogonal

Second step: decompose 4-dim tensors

The spatial part is obtained after contracting with the spatial

projection operator



It is now possible to define the 3-dim covariant derivative of a 

spatial tensor. This is simply the projection on    of all the indices 

of the the 4-dim. covariant derivative 

which, as expected, is compatible with spatial metric

All of the 4-dim tensor algebra can be extended straightforwardly 

to the 3-dim. spatial slice, so that the 3-dim covariant derivative 

can be expressed in terms of the 3-dimensional connection 

coefficients:



Similarly, the 3-dim Riemann tensor associated with    is defined via 

the double 3-dimensional covariant derivative of any spatial vector     

, ie

where

and

More explicitly,  the 3-dim Riemann tensor can be written in terms 

of the 3-dim connection coefficients as

Also, the 3-dim contractions of the 3-dim Riemann tensor, i.e. the

3-dim Ricci tensor the 3-dim Ricci scalar are respectively given by



It is important not to confuse the 3-dim Riemann tensor

with the corresponding 4-dim one

is a 4-dimensional tensor but it is purely spatial 

(spatial derivatives of spatial metric )

is a full 4-dimensional tensor containing also time derivatives 

of the full 4-dim metric 

The information present in          and “missing” in            can be 

found in another spatial tensor: the extrinsic curvature.

As we shall see, this information is indeed describing the time 

evolution of the spatial metric



More geometrically, the extrinsic curvature measures the changes in 

the normal vector under parallel transport

parallel 

transport 

Hence it measures how the 3-dim 

hypersurface is “bent” with respect to 

the 4-dim spacetime

Later on we will discuss also a 

“kinematical” interpretation of the 

extrinsic curvature in terms of the 

spatial metric

Consider a vector at one position     and parallel-

transport it to a new location 

The difference in the two vectors is proportional to the 

extrinsic curvature and this can be positive or negative



Since the extrinsic curvature measures the bending of the spacelike 

hypersurface, two more equivalent definitions exists for the extrinsic 

curvature:

2) in terms of the acceleration of normal observers:

3) in terms of the Lie derivative of the spatial metric:

1) in terms of the Lie derivative of the spatial metric:



Finding a direction for evolutions

Note that the unit normal    to a spacelike hypersurface      is not 

the natural time derivative. This is because    is not dual to the 

surface 1-norm    , i.e.

We need therefore to find a new vector along which to carry out 

the time evolutions and that is dual to the surface 1-norm.

Such a vector is easily defined as

where     is any spatial “shift” vector. 

Clearly now the two tensors are dual to each other, ie



Because the vector     is dual to the 1-form      , we are guaranteed 

that the integral curves of    are naturally parametrized by the time 

coordinate.

Stated differently, all 

infinitesimal vectors     

originating on one   

hypersurface     would end up 

on the same hypersurface  

This is not guaranteed for 

translations along 

A more intuitive description of the lapse function     and of the shift

vector      will be presented once we introduce a coordinate basis

Note that    is not necessarily timelike if the shift is superluminal



Selecting a coordinate basis

So far we have dealt with tensor eqs and not specified a coordinate 

basis with unit vectors    . Doing so can be useful to simplify 

equations and to highlight the “spatial” nature of    and 

ii) the fourth one has to be along the vector   , i.e.

The choice in this case in very simple. We want:

i) three of them have to be purely spatial, i.e.



As a result:

i.e.  the Lie derivative along    is a simple partial derivative

i.e.  the space covariant components of a timelike vector are 

zero; only the covariant time component survives

i.e.  the time contravariant component of a spacelike vector is 

zero; only the spatial contravariant components survive

Putting things together and bearing in mind that 



Because for any spatial tensor               the contravariant 

components of the metric in a 3+1 split are

Similarly, since              the covariant components are 

Note that                      (i.e.            are inverses) and thus they 

can be used to raise/lower the indices of spatial tensors 
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Decomposing the Einstein equations

• So far we have just played with differential geometry. No 

mention has been made of the Einstein equations.

• The 3+1 splitting naturally “splits” the Einstein equations into:

✴ a set which is fully defined on each spatial hypersurfaces 

(and does not involve therefore time derivatives).

✴ a set which instead relates quantities (i.e. spatial metric and 

extrinsic curvature) between two adjacent hypersurfaces. 

• The first set is usually referred to as the “constraint” equations, 

while the second one as the “evolution” equation



Next, we need to decompose the Einstein equations in the spatial 

and timelike parts. 

Next, we make 3 spatial projections and a timelike one to obtain 

the Codazzi equations

and to do this we need to define a few identities

First we decompose the 4-dim Riemann tensor               

projecting all indices to obtain the Gauss equations



Finally we take 2 spatial projections and 2 timelike ones to obtain 

the Ricci equations

where the second derivative of the lapse has been introduced via 

the identity

Another important identity which will be used in the following is 

and which holds for any spatial vector



The evolution part of the Einstein equations

We are now ready to express the missing piece of the 3+1 

decomposition and derive the evolution part of the Einstein eqs.

We need suitable projections of the right-hand-side of the Einstein 

equations and in particular the two spatial ones, ie 

with 

where the energy-momentum tensor of a perfect fluid is:



Similarly, the momentum density (i.e. the extension of the 

Newtonian mass current) will be given by the mixed time and spatial

projection

Since                , (the two vectors are parallel and unit vectors) 

the energy density measured by the normal observers will be 

given by the double timelike projection 

Just as a reminder, the fully spatial projection of the energy-

momentum tensor was already introduced as



The (ADM) Einstein eqs in 3+1

In such a foliation, we can write the Einstein eqs in the 3+1 

splitting of spacetime in a set of evolution and constraint 

equations as:

[6 eqs]

[6 eqs]

These are 12 hyperbolic, first-order in time, second-order 

in space, nonlinear partial differential equations: evolution 

equations



We first time-project twice the left-hand-side of the Einstein 

equations to obtain 

The constraint equations (I)

Doing the same for the right-hand-side, using the Gauss eqs 

contracted twice with the spatial metric and the definition of the 

energy density we finally reach the form of the Hamiltonian 

constraint equation

Note that this is a single elliptic equation (hence not containing 

time derivative) which should be satisfied everywhere on the 

spatial hypersurface 



The constraint equations (II)

Similarly, with a mixed time-space projection of the left-hand-side 

of the Einstein equations we obtain 

The 4 constraint equations are the necessary and sufficient 

integrability conditions for the embedding of the spacelike 

hypersurfaces                    in the 4-dim. spacetime 

Doing the same for the right-hand-side, using the contracted 

Codazzi equations and the definition of the momentum density 

we finally reach the form of the momentum constraint equations

which are also 3 elliptic equations.



The (ADM) Einstein eqs in 3+1

Similarly

[1 eq]

These are 1+3 elliptic (second-order in space), nonlinear 

partial differential equations: constraint equations

[3 eqs]

Hamiltonian 

Constraint (HC)

Momentum 

Constraints (MC)



The (ADM) Einstein eqs in 3+1

All together we have:

[6]

[6]

[1]

[3]

These 6+6 (+3+1) eqs are also known as the ADM equations. In 

practice, only the evolution eqs are solved and the constraints are 

instead monitored (more later)



ADM vs Maxwell
The ADM eqs may appear as rather cryptic and simply complicated. 

However, it is easy to see analogies with the Maxwell eqs. and make 

the equations less cryptic.

The relevant quantities in this case are the electric and magnetic fields

, the charge density      and the charge current density

Then also the Maxwell equations split into evolution equations

and constraint equations



It is then possible to make the associations

Similarly, the RHS of the evolution equation of            involve 

matter sources as well as second spatial derivatives of the 

second field variable 

and realize that the RHSs of the evolution equation of           

involve a field variable             and the spatial derivatives of a 

gauge quantity 

Indeed, the similarities between the ADM eqs and the Maxwell 

eqs written in terms of the vector potential (i.e. as in previous 

slide) are so large that they suffer of the same 

problems/instabilities (more later) 



In practice, the ADM are essentially never used!

These equations are perfectly alright mathematically but not in 

a form that is well suited for numerical implementation. 

Indeed the system can be shown to be weakly hyperbolic and 

hence “ill-posed”

In practice, numerical instabilities rapidly appear that destroy 

the solution exponentially

However, the stability properties of numerical implementations 

can be improved by introducing certain new auxiliary functions

and rewriting the ADM equations in terms of these functions.
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: conformal factor  

: conformal 3-metric 

: trace of extrinsic curvature

: trace-free conformal   

extrinsic curvature 

:“Gammas” 

The ADM equations are then rewritten as

The same is done for the ADM eqs and new evolution 

variables are introduced to obtain a set of eqs that is strongly 

hyperbolic and hence well-posed (doesn’t blow up).

are our new evolution variables



where

These equations are also known as the BSSNOK equations 

or more simply the conformal traceless formulation of the 

Einstein equations.



Although not self evident, the BSSNOK equations are 

strongly hyperbolic with a structure which is resembling the 

1st-order in time, 2nd-order in space formulation

BSSNOK

The BSSNOK is a widely used formulation of the Einstein eqs 

and used to simulate black holes and neutron stars. Other 

formulations have been recently suggested that have even 

better properties, e.g. CCZ4, Z4c.

scalar wave equation



The 3+1 splitting of the 4-dim spacetime represents an 
effective way to perform numerical solutions of the Einstein eqs.

Such a splitting amounts to projecting all 4-dim. tensors either 
on spatial hypersurfaces or along directions orthogonal to such 
hypersurfaces. 

The 3-metric and the extrinsic curvature describe the 
properties of each slice.

Two functions, the lapse and the shift, tell how to relate 
coordinates between two slices: the lapse measures the proper 
time, while the shift measures changes in the spatial coords.

Einstein equations naturally split into evolution equations and 
constraint equations.

Recap (I)



The ADM eqs are ill posed and not suitable for numerics.

Alternative formulations (BSSNOK, CCZ4, Z4c) have been 
developed that are strongly hyperbolic and hence well-posed.

Both formulations make use of the constraint equations and 
can use additional evolution equations to damp the violationsns

The hyperbolic evolution eqs. to solve are: 6+6+(3+1+1) = 17. 
We also “compute” 3+1=4 elliptic constraint eqs

Recap (II)

NOTE: these eqs are not solved but only monitored to verify
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Initial data



Einstein equations represent an initial-value boundary problem

(IVBP). Stated differently, once the solution is known/specified at 

any initial time, the hyperbolic nature of the equations 

completely determines the space of future solutions



Gauge conditions



Let us recap what we have already seen for the interpretation 

ofthe lapse, shift and spatial metric. Using the expression for the 

covariant 4-dim covariant metric, the line element is given

Hence:

the lapse measures proper time

between two adjacent hypersurfaces

the shift relates spatial coordinates 

between two adjacent hypersurfaces

the spatial metric measures distances between points on every 

hypersurface



We can now have a more intuitive interpretation of the lapse, 

shift and spatial metric. Using the expression for the covariant 4-

dim covariant metric, the line element is given

Hence:

the lapse measures proper time

between two adjacent hypersurfaces

the shift relates spatial coordinates 

between two adjacent hypersurfaces

the spatial metric measures distances between points on every 

hypersurface

normal line
coordinate line



NOTE: the lapse, and shift are not solutions of the Einstein 

equations but represent our “gauge freedom”, namely the 

freedom (arbitrariness) in which we choose to foliate the 

spacetime. 

Any prescribed choice for the lapse is usually referred to as a 

”slicing condition”, while any choice for the shift is usually 

referred to as ”spatial gauge condition” 

While there are infinite possible choices, not all of them are 

equally useful to carry out numerical simulations. Indeed, 

there is a whole branch of numerical relativity that is 

dedicated to finding suitable gauge conditions. 



Several possible routes are possible

i) make a guess (i.e. prescribe a functional form) for the lapse, 

and shift and hope for the best: eg geodesic slicing 

obviously not a good idea



The “1+log” slicing condition also 

has excellent singularity avoiding 

properties since               and 

hence the lapse remains very 

small in those regions where it 

has “collapsed” to small values

Indeed the condition                            represents a family of 

slicing conditions such that:



where    acts as a restoring force to avoid large oscillations in the 

shift and the driver tends to keep the Gammas constant 

(reminiscent of minimal distortion)

Similarly, a popular choice for the shift is  the hyperbolic 

“Gamma-driver” condition

Overall, the “1+log” slicing condition and the “Gamma-driver”

shift condition are the most widely used both in vacuum and 

non-vacuum spacetimes



excising parts of the spacetime with singularities…
apparent horizon found on a given Σt

In principle, the yellow region is

causally disconnected from the blue

one (ligth cones are “tilted in”); no

boundary conditions would be

needed at the apparent horizon.
In practice, the actual excision

region (“legosphere”: black region)

carved well inside the horizon.

NOTE: 

o the Einstein equations are highly nonlinear in 

the yellow region! All sorts of numerical 

problems...

o the (apparent) horizon must be found; this is 

an expensive operation…

o the excised region has to move on the grid…Images by D. Pollney



Extraction of gravitational waves



Weyl scalars

We then calculate     in terms of ADM related quantities as

where

Then at a sufficiently large distance from the source the GWs in 

the two polarizations            can be written as 

Then, eg, the projection of the momentum flux on the equatorial 

plane as

This quantity can be used, for instance, to calculate the recoil.



The lapse and the shift have simple physical definitions and 
relate events on two different hypersurfaces.

Getting a good formulation of the Einstein eqs will work only in 
conjunction with good gauge conditions. “1+log” slicing 
“Gamma-driver” conditions work well in a number of conditions.

Even with suitable formulations and gauge conditions, any 
astrophysical prediction needs the calculation of “realistic” initial 
data and hence the solution of elliptic equations.

GWs can be extracted with great accuracy. Several methods 
using either the radiative part of the Riemann tensor or 
perturbations of the Schwarzschild spacetime.

Recap



The ADM eqs are ill posed and not suitable for numerics.

Alternative formulations (BSSNOK, CCZ4, Z4c) have been 
developed that are strongly hyperbolic and hence well-posed.

Both formulations make use of the constraint equations and 
can use additional evolution equations to damp the violationsns

The hyperbolic evolution eqs. to solve are: 6+6+(3+1+1) = 17. 
We also “compute” 3+1=4 elliptic constraint eqs

Recap (II)

NOTE: these eqs are not solved but only monitored to verify



General Relativity with the Computer

http://itp.uni-frankfurt.de/~hanauske/VARTC/


