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Quantum game theory is a mathematical and conceptual amplification of classical game theory.
The space of all conceivable decision paths is extended from the purely rational, measurable space
in the Hilbertspace of complex numbers. Trough the concept of a potential entanglement of the
imaginary quantum strategy parts, it is possible to include corporate decision path, caused by cultural
or moral standards. If this strategy entanglement is large enough, then, additional Nash-equilibria
can occur, previously present dominant strategies could become nonexistent and new evolutionary
stable strategies can appear. This article focuses on a quantum amplification of an evolutionary
(2 player)-(2 strategy) - coordination game and shows, that the different publication norms of
scientific authors additionally depend on their strategic entanglement strength γ. If the strength
of entanglement exceeds a certain value, a phase transition within the whole population occurs,
reaching the global optimum of the underlying coordination game.

I. INTRODUCTION

In 1928 the main inventor of game theory - Johann (John)
von Neumann - published the first article on game theory
[38]. The first book about game theory was published in
1944 by von Neumann and Morgenstern [37]. Evolutionary
game theory [1, 12, 20, 29, 29, 32–35] was developed after
J.M. Smith had found that the stationary solutions of
the evolutionary differential equations are connected with
game theory [31]. In the following years applications in
respect to biological systems [4, 17, 22, 23, 30, 36] and
socio-economic systems, e.g. ”public good”-games [6],
cultural or moral developments [10, 16], the evolution of
languages [26], social learning [10], the evolution of social
norms [2, 24], the financial crisis [15] and the evolution of
social networks [9, 18, 35] came into the focus of research.
In 1999 the first two articles on quantum games where
published [8, 19]. In 2001 the first quantum game was
realized on a quantum computer [7] (see also [28]). The
extension to more than two players [3], the application
to social networks [13, 27], social experiments [5, 14, 25]
and first approaches towards an evolutionary quantum
game theory [11, 15, 21][39] followed.
This article focuses on a simplified version of the open
access game of scientific communication (for detail see [13])
and extends it to an evolutionary quantum coordination
game. The payoff structure of the underlying game can
be described by the payoff matrix illustrated in Table I.

A\B o=sB1 ø=sB2
o=sA1 (r + δ,r + δ) (r − α,r + α)
ø=sA2 (r + α,r − α) (r,r)

Table I: Payoff of the underlying coordination game.

The players are the authors of scientific articles, the two

strategies represent the authors’ choice between publishing
open access (o) or not (ø), parameter r describes the
increase of reputation achieved by an author, if he/she
publishes a new paper, δ is an additional benefit if both
authors publish open access and the parameter α (α < δ)
is responsible for the potential increase or decrease of
reputation if one author publishes open access and the
other not (for detail see [13]).

II. DEFINITIONS AND KEY ASPECTS OF
CLASSICAL EVOLUTIONARY GAME THEORY

This section is dedicated to the introduction of the neces-
sary definitions and fundamental basics of evolutionary
game theory. In the following the presentation is con-
strained to the normal form of a symmetric (2 player)-(2
strategy) game Γ (for details see [12, 35]):

Γ :=
(
{A,B} ,S × S, $̂A, $̂B ≡

(
$̂A
)T)

(1)

S = {s1, s2} : Set of pure strategies

$̂A =

(
$11 $12

$21 $22

)
: Payoff matrix of Player A

The mixed strategy payoff function of player A has the
following structure[40]

$̃A : S̃ × S̃ → R , $̃A(s̃A1 , s̃B1 ) = $11s̃
A
1 s̃

B
1 + (2)

+$12s̃
A
1 (1− s̃B1 ) + $21(1− s̃A1 )s̃B1 + $22(1− s̃A1 )(1− s̃B1 )

, where s̃A1 , s̃B1 ∈ [0, 1] and s̃A2 = 1 − s̃A1 , s̃B2 = 1 − s̃B1 .
Inserting the payoff matrix of the coordination game of
Table I into equation 2 yields to the following structure
of the mixed strategy payoff function (s̃A := s̃A1 and
s̃B := s̃B1 ):

$̃A(s̃A, s̃B) = δ s̃As̃B + α
(
s̃B − s̃A

)
+ r (3)
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Figure 1: Payoff function in mixed strategies.

The coordination game of Table I has two symmetric,
pure Nash-equilibria ((o,o)= (sA1 , sB1 ) = (s̃A = 1, s̃B =
1) and (ø,ø)= (sA2 , sB2 ) = (s̃A = 0, s̃B = 0)) and one
symmetric mixed strategy Nash-equilibrium (sA∗, sB∗) =
(s̃A = α

δ , s̃
B = α

δ ). (sA∗, sB∗) can be calculated using
the fact that the partial derivative of the mixed strategy
payoff function of player A vanishes at the value of the
mixed strategy Nash-equilibrium:

∂$̃A(s̃A, s̃B)
∂s̃A

∣∣∣∣∣
s̃B=sB∗

= δsB∗ − α = 0 ⇒ sB∗ = α

δ
(4)

The three Nash-equilibria of the underlying coordination
game (Table I, with r = 5, δ = 3 and α = 2) can be
visualized (see Figure 1) by plotting the payoff of player
A as a function of the mixed strategy of player A (s̃A)
and player B (s̃B). The pure Nash-equilibrium (sA1 , sB1 ) is
actually present, because if one fixes the strategy of player
B to sB1 = (s̃B = 1) then the highest point on the payoff-
surface for player A is realized, if he/she chooses sA1 . The
other pure Nash-equilibrium can be visualized the same
way by fixing the strategy of player B to sB2 = (s̃B = 0).
The mathematical property of the mixed strategy Nash-
equilibrium (equation 4) is visualized in Figure 1 by a
transformation of the figures’ viewpoint, as the three di-
mensional payoff surface shrinks to one point at sB∗, if
one looks in direction of the s̃A-axis.[41] To describe the
time evolution of the repeated version of the game Γ,
replicator dynamics were developed. Replicator dynam-
ics, formulated within a system of differential equations,
defines in which way the population vector ~x = (x1, x2)
evolves in time. Each component xi = xi(t) (i = 1, 2)
describes the time evolution of the fraction of different
player types i in the whole population, where a type-i
player is understood as an actor playing strategy si. The
population vector has to fulfill the following conditions:

xi(t) ≥ 0 ∀ i = 1, 2 , t ∈ R and
2∑
i=1

xi(t) = 1 (5)

Figure 2: Fraction of players choosing strategy s1 =o as a
function of time (x(t)) for different starting values x(t = 0).
Results were calculated using the payoff matrix of Table I and
the parameter set r = 5, α = 2 and δ = 3.

x(t)

t

Because of condition 5, the population vector ~x(t) =
(x1(t), x2(t)) can be reduced to only one independent
component (x(t) := x1(t), and x2(t) = 1− x(t)) and the
replicator equation simplifies as follows:

dx

dt
= x

[
($11 − $21)(x− x2) + ($12 − $22)(1− 2x+ x2)

]
= x

[
(δ + α)x− δx2 − α

]
:= g(x) (6)

Figure 2 visualizes the time evolution of the population
fraction x(t) for several different starting values (xo :=
x(t = 0)). The two symmetric, pure Nash-equilibria are
the two evolutionary stable strategies (ESSs). Which
of these ESSs is developed, depends on the value of the
initial condition xo. If xo is above the value of the mixed
strategy Nash-equilibrium (xo > α

δ ), the population will
evolve to a community choosing solely the strategy s1
(x = s̃A = s̃B = 1), whereas if xo < α

δ the population will
asymptotical reach x = 0, which means that every player
will choose strategy s2 =ø. In respect to the application
under focus, the results of the classical evolutionary game
indicate, that if a scientific community has a traditional
publication norm (e.g. almost all of the scientists do not
use open access repositories) it is not possible to overcome
the dilemma of the game, and the population remains in
the ESS with the lower payoff.

III. EVOLUTIONARY QUANTUM GAME
THEORY

In quantum game theory, the measurable pure classical
strategies (s1 and s2) correspond to the orthonormal unit
basis vectors |s1〉 and |s2〉 of the two dimensional com-
plex space C2, the so called Hilbert space Hi of player i
(i = A,B). A quantum strategy of a player i is represented
as a general unit vector |ψ〉i in his/her strategic Hilbert
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space Hi. The whole quantum strategy space H is con-
structed with the use of the direct tensor product of the
individual Hilbert spaces: H := HA ⊗HB . The main dif-
ference between classical and quantum game theory is that
in Hilbert space H correlations between the players’ indi-
vidual quantum strategies are allowed, if the two quantum
strategies |ψ〉A ∈ HA and |ψ〉B ∈ HB are entangled. The
overall state of the system we are looking at is described as
a 2-player quantum state |Ψ〉 ∈ H. The four basis vectors
of the Hilbert space H are defined as the classical game
outcomes (|s1s1〉 := (1, 0, 0, 0), |s1s2〉 := (0,−1, 0, 0),
|s2s1〉 := (0, 0,−1, 0) and |s2s2〉 := (0, 0, 0, 1)). The setup
of the quantum game begins with the choice of the ini-
tial state |Ψ0〉. We assume that both players are in the
state |s1〉. The initial state of the two players is given
by |Ψ0〉 = Ĵ |s1s1〉, where the unitary operator Ĵ is
responsible for the possible entanglement of the 2-player
system (for details see [8, 13, 15]). The players’ quantum
decision (quantum strategy) is formulated with the use
of a two parameter set of unitary 2× 2 matrices:

Û(θ, ϕ) :=

(
ei ϕ cos( θ2 ) sin( θ2 )
−sin( θ2 ) e−i ϕ cos( θ2 )

)
(7)

∀ θ ∈ [0, π] ∧ ϕ ∈ [0, π2 ] .

By arranging the parameters θ and ϕ, a player chooses his
quantum strategy. The classical strategy s1 is selected by
appointing θ = 0 and ϕ = 0 (ŝ1 := Û(0, 0)), whereas the
strategy s2 is selected by choosing θ = π and ϕ = 0 (ŝ2 :=
Û(π, 0)); in addition, the quantum strategy Q̂ is given
by Q̂ := Û(0, π/2). After the two players have chosen
their individual quantum strategies (ÛA := Û(θA, ϕA)
and ÛB := Û(θB , ϕB)) the disentangling operator Ĵ † is
acting to prepare the measurement of the players’ state.
The entangling and disentangling operator (Ĵ , Ĵ †; with
Ĵ ≡ Ĵ †) depends on one additional single parameter
γ ∈ [0, π/2] which is a measure of the strength of the
entanglement of the system. Finally, the state prior to
detection can therefore be formulated as follows:

|Ψf 〉 = Ĵ †
(
ÛA ⊗ ÛB

)
Ĵ |s1s1〉 (8)

The expected payoff within a quantum version of a general
2-player game - which is an amplification of equation 2
- depends on the payoff matrix (see Table I) and on the
joint probability to observe the four observable outcomes
Ps1s1 , Ps1s2 , Ps2s1 and Ps2s2 of the game

$A = $11 Ps1s1 + $12 Ps1s2 + $21 Ps2s1 + $22 Ps2s2

$B = $11 Ps1s1 + $21 Ps2s1 + $12 Ps1s2 + $22 Ps2s2

with: Pσσ, = | 〈σσ,|Ψf 〉 |2 , σ, σ, = {s1, s2} . (9)

To visualize the payoffs in a three dimensional diagram it is
necessary to reduce the set of parameters in the final state:
|Ψf 〉 = |Ψf (θA, ϕA, θB , ϕB)〉 → |Ψf (τA, τB)〉. Within the

following diagram, the same specific parameterization
as Eisert et al. [8] was used, where the two strategy
angles θ and ϕ depend only on a single parameter τ ∈
[−1, 1].[42] Positive τ -values represent pure and mixed
classical strategies, whereas negative τ -values correspond
to quantum strategies, where θ = 0 and ϕ > 0. The whole
strategy space is separated into four regions, namely the
absolute classical region (CC: τA, τB ≥ 0), the absolute
quantum region (QQ: τA, τB < 0) and the two partially
classical-quantum regions (CQ: τA ≥ 0 ∧ τB < 0 and QC:
τA < 0 ∧ τB ≥ 0). Fig. 3 depicts the expected payoff
for scientist A ($A, intransparent surface) and scientist B
($B , wired surface) as a function of their strategies τA and
τB in a separable quantum game (γ = 0). The outcome
of this separable quantum game is similar to the classical
solution outlined in section II. The animation in Figure 3
illustrates the change in the payoff surface, if one allows
the strategic entanglement of the players to increase. For
even tiny values of entanglement a new quantum Nash-
equilibrium and additional ESS appears, for γ > π

4 the
pure Nash-equilibrium (ø,ø) dissolves and the pure Nash-
equilibrium (o,o) becomes the only observable ESS of
the underlying game. A scientific community using a
traditional publication norm can therefore overcome the
dilemma of the game, if the strength of entanglement
exceeds π

4 . In such a case a spontaneous phase transition
will occur reaching the global optimum of the underlying
game.[43]

Figure 3: Payoff surface of player A (solid) and player B
(wired) as a function of their strategies τA and τB .
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