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9. Vorlesung




Plan fUr die heutige Vorlesung

* Kurze Wiederholung: Ausbreitung eines Virus auf einem
komplexen Netzwerk

* Evolutionare Spieltheorie auf komplexen Netzwerken

* Spiele auf einem raumlichen Netzwerk (Spatial Games)
* Dominante (2 x 2)-Spiele auf einem raumlichen Gitter
* Raumliche Koordinations- und Anti-Koordinationsspiele
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* Ausbreitung eines Virus auf einem komplexen Netzwerk
* EinfGhrung in die Epidemiologie
* Das deterministische SIR Modell

* Simulationsbasierte Ansatze




HISTORY OF PANDEMICS

Antonine Plague
Plague of Justinian 541.5

Japanese Smallpox Epidemic 735-737
Black Death (Bubonic Plague) 200M
1347

1351

Small Pox 56M

1520

17th Century Great Plagues

160C

18th Century Great Plagues 600K

1700

Yellow Fever 100-150K
LATE 1800s

HIV/AIDS 25-35M

1981-PRESENT

THROUGHOUT HISTORY, as humans
spread across the world, infectious
diseases have been a constant
companion. Even in this modern
era, outbreaks are nearly constant.

Here are some of history's most
deadly pandemics, from the
Antonine Plague to

Novel Coronavirus (COVID-19)

Spanish Flu

1918-1919

Russian Flu 1M

1889-1890

Ausbreitung eines Virus auf

einem komplexen Netzwerk
Die Geschichte der Pandemien

200M

DEATH TOLL
[HIGHEST TO LOWEST]

Black Death (Bubonic Plague)

1347-1351

o
@ @ . N The outbreak wiped
out 30-50% of Europe's
e,

population. It took more than
200 years for the continent's
population to recover.

The plague originated
in rats and spread to
humans via infected fleas.

56M
Small Pox
1520 Spanish Flu

1918-1919

M Smallpox killed an estimated 90% of
Native Americans. In Europe during the
1800s, an estimated 400,000 people
were being killed by smallpox annually.
The first ever vaccine was created to
ward off smallpox.

30-50M
Plague of Justinian

541-542

The death toll of this plague
is still under debate as new
evidence is uncovered, but
many think it may have
helped hasten the fall of
the Roman Empire.

A series of Cholera outbreaks spread
around the world in the 1800s killing

Asian Flu 11M

. Hong Kong Flu
1968-197¢C

millions of people. There is no solid
consensus on death tolis. v

& B . ]

197¢ 25-35M 1M ™ M
HIV/AIDS The Third Plague Antonine 17th Century Asian Flu Russian Flu Hong Kong Flu Cholera 6
1981-PRESENT 1855 Plague Great Plagues 1957-1958 1889-1890 1968-1970 outbreak
165 1665 1817-1923

20 & € e .
St\{ylpe F|L{ 600K 100-150K 5
Ebola " ik Japanese 18th Century Swine Flu Yellow Fever Ebola MERS SARS
2014 Smallpox Epidemic  Great Plagues 2009-2010 LATE 1800s 2014-2016 2015-PRESENT  2002-2003
v . 735-737 1817-1923
Y Novel Coronavirus (COVID-19) 4.7K* = 47K
2019-PRESENT 3 Novel Coronavirus (COVID-19)

2019-PRESENT

@CAPITALIST ) ) ivisualcapitalist avisualcap (W ) Visualcapitalistcom

“As of Mar 11, officially a
pandemic according to WHO

DEATH TOIlL 1



Phenomena

Venereal Disease

Rumor Spreading

Diffusion of Innovations

Agent
Pathogens
Information, Memes

Ideas, Knowledge

Allgemein: Ausbreitungsphanomene auf komplexen Netzwerken

Network

Sexual Network

Communication Network

Communication Network

Computer Viruses

Malwares, Digital viruses

Internet

Mobile Phone Virus Mobile Viruses Social Network/Proximity Network

Bedbugs Parasitic Insects Hotel - Traveler Network

Malaria Plasmodium Mosquito - Human network

Networks and Agents

The spread of a pathogen, a meme or a computer virus is determined by the network on which the agent spreads
and the transmission mechanism of the responsible agent. The table lists several much studied spreading
phenomena, together with the nature of the particular spreading agent and the network on which the agent
spreads.
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EVO OLUTIONARY
DYNAMlCS

EXPLORING THE EQUATlONS OF LIFE '

EinfGhrung in Teil 11l

Evolutionare Spieltheorie
auf komplexen Netzwerken

Die folgenden Beispiele sind an das Kapitel g im
Buch M.A.Nowak , Evolutionary Dynamics"
(Kapitel 9: Spatial Games) angelehnt.



A quasispecies is a population of
reproducing RNA or DNA molecules

ATCAGGAGCTCA | 0000110011000110
ATCGGGACTCA 0000110011100110
ATCAGGAATCA | 1000110011000010

Evolution is ad
on the fitness landscape

N

‘lll

4-nucleotide alphabet Binary alphabet -

Figure 3.3 The ensemble of genomes of a natural population form a quasispecies: the
genomes of different individuals are similar but not identical. Biology has chosen a four

etter alphabet consisting of the nucleotides A, T, C, and G for its genes. Most in silico

:l\‘l y’\

of the quasispecies

evolution uses a binary alphabet for conveni nce differences (mutations)

re shown in red

The quasispecies equation
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Figure 3.4 The quasispecies equa
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Figure 3.f
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Das Konzept der Quasi-Spezien
(Ensemble von ahnlichen Genomen
Sequenzen (Erbgut eines
Lebewesens) welches durch einen
Prozess der Mutation und Selektion
entstanden ist) wurde von Manfred

Eigen und Peter Schuster
entwickelt. Die Struktur der Quasi-
Spezien Differentialgleichung ist
den Gleichungen der evolutionaren
Spieltheorie sehr ahnlich.




Populationsmodelle der

epidemischen Ausbreitung

Spreading dynamics on networks:
from social interactions to
epidemics and pandemics

e Population-based models

¢ Deterministic or stochastic

e Continuous time
* Ordinary differential equation
* Partial differential equations
 Delay differential equations
* Integro-differential equations

e Discrete time
* Difference equations

* Agent-based/individual-based models

e Usually stochastic

Fakhteh Ghanbarnejad
Sharif University of Technology, Tehran
http://www.pks.mpg.de/~fakhteh

18 March
DPG 2020, Online!

Chat Raise Hand Q&A

hittp:/fwww.modelinginfectiousdiseases.org/




Online-Buch 'Network Science' von Albert-Laszlo Barabasi

Deterministische Modelle der i o: Spreading phenemE:

epidemischen Ausbreitu ng Die deterministischen Populationsmodelle der Epidemiologie

basieren auf gewissen vereinfachten Grundannahmen.

R S| Modell SIS Modell

: @O

REMOVED
(IMMUNE/DEAD]

RECOVERY

ds . i
= =BkYi [1 —r-i]

% e S| R Modell

dr
dt

FRACTION INFECTED i(t)
o
ol

FRACTION INFECTED i(t)
&
T
|

[],-,,,A.LA,i,,“lli..;.A
0 2 4 t 6 8 10

o
o T T T
4

saturation
regime

exponential
regime

exponential endemic
outbreak state

Ifi—1,

If i is small,

-y If i is small, ()= 1 [

i g it
i~ l'”el/»‘(hr—;u/ /}(]\)

Susceptible (S: Gesunde Personen, die mit dem Virus noch keinen Kontakt hatten)

Infected (l: Infizierte Personen, die mit dem Virus Kontakt hatten und andere anstecken
konnen), Recovered (Personen, die infiziert waren aber nicht mehr infektios sind und sich
von der Krankheit erholt haben), Removed (R: Recovered + gestorbene Personen)

FRACTION OF POPULATION
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Das deterministische SIR Modell

— B <k> l(t) S(t)

o

"

pro At neu Infizierte

pi(t) + B <k>i(t) - s(t)
e e - ~ =

pro At Gen. u.tf.d Gest. pro At neu Infizierte

pi(t)
W—/
pro At Genesene und Gestorbene

: S(t) . .
wobei s(t) = — der Anteil der noch nicht erkrankten Personen,
. I(t) . . R(t)
i(t) = — der Anteil der infizierten Personen und r(t) = —— der

Anteil der genesenen und gestorbenen Personen darstellt.
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Simulationsbasierte, Stochastische Modelle

% Super-spreaders

¥ One-hundred-forty-four of the 206 SARS patients diagnosed in Singapore were

traced to a chain of five individuals that included four super-spreaders. The most

important of these was Patient Zero, the physician from Guangdong Province in

China, who brought the disease to the Metropole Hotel. After [1].

Eine bedeutende Einschrankung des deterministischen SIR-
Modells der Virusausbreitung ist die im Modell angenommene
vereinfachte Kontakt-Netzwerkstruktur der das Virus
verbreitenden Personen. Die Ausbreitung eines
Krankheitserregers (z.B. Covid-19 Virus), eines Computervirus
im Internet oder eines Gerichts ("Fake-News") in einem
sozialen Netzwerk hangt jedoch stark von der Topologie des
zugrundeliegenden komplexen Netzwerkes ab.

Die Grundhypothesen des SIR Modells sind in der Realitat
nicht erfillt und beobachtbare Effekte, wie z.B. das Super-
Spreader Phanomen, konnen durch das SIR-Modell nicht
beschrieben werden.

Simulationsbasierte Modelle berechnen hingegen die
Ausbreitung eines Krankheitserregers auf einer komplexen
Netzwerkstruktur, wobei die einzelnen Personen in ihrem
Mobilitats- und Kontakt-Netzwerk eingebettet sind.



Simulationsbasierte, Stochastische Modelle

'/

¥ AFace-to-face Interactions
"I.,_- A face-to-face contact network mapped out using RFA tags, capturing interactions between 232 students and 10 teachers
8 across 10 classes in a school [31]. The structure of the maps obtained by RFID tags depend on the context in which they
are collected. For example the school network shown here reveals the presence of clear communities. In contrast, a study
capturing the interactions between individuals that visited a museum reveal an almost linear network [29]. Finally, a

network of attendees of a small conference is rather dense, as most participants interact with most others [29]. After [31].

Eine der die Ausbreitung am starksten bestimmende Grol3e ist
die zugrundeliegende Kontakt-Netzwerkstruktur der das Virus
verbreitenden Personen.

In den simulationsbasierten Modellen kann man die
Auswirkungen der Topologie des Kontakt-Netzwerks studieren.
Die Verteilungsfunktion der Knotengrade spielt hierbei wieder
eine bedeutende Rolle und kann mittels der 'degree block'-
Approximation analysiert werden (siehe Image 10.9 in Chapter

10: Spreading phenomena).
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Wozu?
Evolutiondre Spieltheorie auf komplexen Netzwerken

Die deterministische evolutionare Spieltheorie und die Differentialgleichung der Replikatordynamik benutzen ahnliche
Annahmen wie das deterministische SIR-Modell der Ausbreitung eines Krankheitserregers auf einem komplexen Netzwerk.
Beide mathematischen Modelle betrachten das zu untersuchende System aus einer Art gemittelten Sichtweise und
beschreiben es durch die kontinuierliche Populationsfunktionen, die Ihrerseits deterministischen Differentialgleichungen
folgen. Die notigen Voraussetzungen einer solchen Beschreibung sind hierbei die Folgenden:
* Jedes Individuum der Population kann mit jedem anderen in Kontakt treten, bzw.

Jeder Spieler der Population kann mit jedem anderen das zugrundeliegende Spiel spielen
* Die Anzahl der Individuen/Spieler der Population ist unendlich grof3
In dem, in dieser Vorlesung dargestelltem Jupyter Notebook , Ausbreitung eines Virus auf einem komplexen Netzwerk
(Simulationsbasierte Losungen)*, hatten wir gesehen, wie eine Agentenbasierte Simulation des deterministischen SIR-Modells
aussieht und inwieweit die simulierten Ergebnisse mit den Vorhersagen des mathematischen Modells Gbereinstimmen.
Zusammenfassend ist hierbei festzuhalten, dass allein im Limes eines sehr grof3en, vollstandig verbundenem Netzwerks, die
Vorhersagen der deterministischen Populationsmodelle mit den Simulationsergebnissen Ubereinstimmen konnen.

Das Versagen der deterministischen Modelle zur Beschreibung eines realen Systems, zeigte sich in deutlicher Weise wahrend der Covid-
Pandemie. Eine Physik der sozio-6konomischen Systeme, deren Zweck darin besteht real-existierende Vorgange zu beschreiben und zu
ana|y5|eren um so die zukunftige Entwicklung eines Populationsverhaltens vorhersagen zu kénnen, ist somit auf simulationsbasierte Ansatze
Au,-nt, rVerwendung komplexer Netzwerke angeW|esen Jedoch versagten auch die melsten 5|mulat|onsba5|erten Modelle, da das reale Verhalten

auch durch die medlale Verbreltung einer hohen Gefahr der Ansteckung. Die Rolle der Medien (beschrankte/selektive
 Informationsausbreitung), und als Folge die Gruppenbildung (siehe ,Formation of Communities*) und die mit ihr einhergehende
arallelweltbild-Entstehung" innerhalb der Sub- Communities (z.B. ,Medienkritische-Gruppe" vs. ,Medienkonforme-Gruppe") sind nur einige

> Beispiele der komplexen Realitat.
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Spieltheorie auf
omplexen Netzwerken

Viele in der Realitat vorkommende evolutionare Spiele werden auf einer definierten
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind
hierbei nicht gleichwertig, sondern wahlen als Spielpartner nur mit ihnen durch das
Netzwerk verlinkte (verbundene) Partner aus.

oo@%g '
[“ X OO QD

zeitliche

348 Entwicklung

° der
Population auf
vorgegebener
Netzwerkstruktur

Evolutionar

x(0)=0.5 x(10)=0.75

most oth

Mogliche Strategien: (griin , schwarz), Parameter t stellt die ,Zeit dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie ,,griin“ spielen.
Die roten Verbindungslinien beschreiben die moglichen Spielpartner des Spielers
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Symmetrische (2x2)-Spiele einer Population

Die evolutionare Spieltheorie betrachtet die zeitliche Entwicklung des
strategischen Verhaltens einer gesamten Spielerpopulation.

® . @ »
- ® “ e @ -
* *
. D
. o ® zeitliche ® PY °
@ Entwicklung
@ . * &
- der °
Population
® o o o P o, ° " .
x(0)=0.15 x(10)=0.5

Mogliche Strategien: (griin , schwarz), Parameter t stellt die ,Zeit“ dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie ,griin“ spielen.



Fvolutionare Spi orie

Symmetrische (2x2)-Spiele einer Population

Die einzelnen Akteure innerhalb der betrachteten Population spielen ein
andauernd sich wiederholendes Spiel miteinander, wobei sich jeweils zwei
Spieler zufallig treffen, das Spiel spielen und danach zu dem nachsten

Spielpartner wechseln .

"@@

000

x(0)=0.15

Die

Anfangspopulat @ e
: . ® ®

ion von Spielern ®
spielt zum ® ® - »
Zeitpunkt t=0
das erste Mal
das Spiel. Die “
Spieler wahlen ® ®
im Mittel zu
15% die griine

Strategie. x(10)=0.5

Das evolutionadre Spiel schreitet voran und die griine Strategie wird fur die Spieler
zunehmend attraktiver. Zum Zeitpunkt t=10 spielen schon 50% griin.



wobei z1(t), i = 1,2,...

Fitness der Strategie i

my

2%

[=1

z;' (1)

7

Fitness der Strategie j

, T4 unda:f(t),j: 1,2,...

ZZ%% C(t)
I=1 k=1

7/

Durchschn. Fitne;; der Population A

Zz$lsz )

=1 k=1

7

Durchschn. Fitness der Population B |

,mp die Anteile der in den Spielergruppen A

und B zur Zeit £ gewihlten Strategien widerspiegeln und in der Soziobiologie den Frequenzen der
Quasispezies entsprechen.
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Nimmt man zusétzlich ein symmetrisches Spiel an ($ :=§ = (3; ) ), in welchem die Auszahlungswerte (Fitness-Werte) der

Populationsgruppen gleich sind, so kann man die beiden Gruppen von ihrer mathematischen Struktur her als ununterscheidbare
Spielergruppen mit identischen Populationsvektoren z(t) = y(¢) annehmen. Die Differentialgleichung schreibt sich dann wie
folgt:

dz(t)
dt

= [[$11 — $o1)(z — 22) + (812 — $22)(1 — 2z + :.-:E]] z(t) =: g(x) (3)

Veralleemeinert man diese Differentialgleichung wieder auf mehr als zwei Strategien, so kann man abkiirzend die folgende
Formulierung schreiben: b

% — % (M) _ ((EBE)TE) 7
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(fir das Gefangenendilemma) - (-7,-7) (1,-9)
Die Differentialgleichung der Replikatordynamik - (_9 ) _1) (_3 ) _3)

fir das Gefangenendilemma lautet:

w0)= 50 250 -2-(x()) = g(x(0)

g(x(1)) = x(t) (-7~ (-9)- (x(1) ~ x(1)*) + (3= (-1)) -2+ x(1) =1~ x()*)

0.5 1 —
0.4—3 _
] 0.8 |
0.3 _
o) 5 gl
. g(x)=2-x-2-x ) ]
: Xt
0.1  oa

©" " " o2 04 08 = 08 1
x 02 (t) fiir unterschiedliche
Beispiel: Gefangenendilemma Anfangspopulationen x(o)

g(x)=g(x(t)) im Bereich [o,1] dargestellt 0 05 1' 15 2 25 3
| ¢
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(flr das Hirschjagt-Spiel)

Die Differentialgleichung der Replikatordynamik
fir das Hirschjagt-Spiel lautet:

2(0)= 22 4 () -3+ (x0)) ~x(0)- = g (x(0)
g(x()) = x(1)- ((2 0)- (x(£) — x(t)? )+ G220 1 X0 %))

g(x)=4-x P _3.x"—x

0.151

(%) | 61
0.1

0.057 0.4

x(t) fir unterschiedliche
nfangspopulationen x(0)

0] 02 0.4 06 08 1 j A
-0.051 X 02 '§

Beispiel: Hirschjagt-Spiel 0 1' 2 3 4 5
g(x)=g(x(t)) im Bereich [o,1] dargestellt :
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(fur das Angsthasen-Spiel)

plikatordynamik™—

Die Differentialgleichung der Replikatordynamik
fir das Angsthasen-Spiel lautet:

x(1) =

a’x(t)

2-(x(0))’

B . ) .o
-(o,z) (1,1)

=3 (x(®)) +x(t) = g(x(2))

g(x(t)) = x(t)-((—1—0>-<x<t>—x<r)2>+(1—2)-(2-x<r>—1—x<t>2))

0.1+

g(x) 0.05

0.05-

-0.1-

(X)=2-x=3-x"+x

0.2

0.4

Beispiel: Angsthasen-Spiel
g(x)=g(x(t)) im Bereich [o,1] dargestellt

>.

0.8-
0.6
0.4

0.2

x(t) fir unterschiedliche
Anfangspopulationen x(0)

| B



Klassifizierung von evolutionaren,

P — symmetrischen )-Spielen

Dominante Spiele S
(2. Strategie dominiert 1.Strategie) ‘

Es existiert ein Nash - Gleichgewicht, welches
die anderen Strategien dominiert. ESS

bei x=o0. : N A A
Koordinationsspiele ‘ ]
Es existieren drei Nash - Gleichgewichte und I

zwei reine ESS, die abhangig von der
Anfangsbedingung realisiert werden.

Anti - Koordinationsspiele ‘ oo} -
Es existieren drei Nash — Gleichgewichte aber oot

nur eine gemischte ESS, die unabhangig -

von der Anfangsbedingung realisiert =

wird. o P

Dominante Spiele
(1. Strategie dominiert 2.Strategie) =)

Es existiert ein Nash - Gleichgewicht, welches
die anderen Strategien dominiert. ESS
bei x=1.




Das Kapitel 4 (Evolutionary Games) in dem

oSiwesn wo sirategles, Aand B Buch M.A.Nowak ,,Evolutionary
B & B e oot b D.ynamicfs“ befasst sich mit Spieltheorie
S G g ‘ (siehe Teil | der Vorlesung)
d o Dominante Spiele
S dominates A, ifa<cand b<d (2. Strategie dominiert 1.Strategie)
. ———— D Es existiert ein Nash - Gleichgewicht, welches
| — 4 die anderen Strategien dominiert. ESS bei
A and B are bistable, if a> ¢ and b < ¢ >qQuiliorium X=0.
A® ‘—o—-} ® s e equilibrium
elecC vnamics . . .
Aand B coexist, if a< cand b > a: J’m 0 I.(o.ordmat".)nssplele : :
A0 >0 ' Es eX|st|e.ren_ drei Nash — GIe!theW|chte und
Os zwei reine ESS, die abhangig von der
A a'nd Bare neutral, if a= ¢ and b= o Anfangsbedingung realisiert werden.
A ——
/4 \\.B\ o Anti-Koordinationsspiele
/) ilfire,jgf, Tﬁ‘“f '?;@dfwe possibilties for the selection RO [ S existieren drei Nash — Gleichgewichte aber
equiibrium, and () 4 ;:'j'”/jr:ff:(]”t’ﬁﬂ‘ ond B are bistable, (i) A and B coeistin 35 nur eine gemischte ESS, die unabhangig
U i von der Anfangsbedingung realisiert wird.




Dominantes Spiel

Ldsen des evolutionaren Spiels
mit Python

Anti — Koordinationsspiel

c=0,.d=1




Evolutionare Spieltheorie auf

"~ komplexen Netzwerken

Viele in der Realitat vorkommende evolutionare Spiele werden auf einer definierten
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind
hierbei nicht gleichwertig, sondern wahlen als Spielpartner nur mit ihnen durch das
Netzwerk verlinkte (verbundene) Partner aus.

[ == /

zeitliche
Entwicklung

der

Population auf
vorgegebener
Netzwerkstruktur

x(0)=0.5 x(10)=0.75

Mogliche Strategien: (griin , schwarz), Parameter t stellt die ,Zeit dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie ,,griin“ spielen.
Die roten Verbindungslinien beschreiben die moglichen Spielpartner des Spielers



S pat | a | G ames Das Kapitel g in dem Buch M.A.Nowak , Evolutionary

Dynamics™ handelt Gber Spatial Games

Payoff matrix:

A B

among the 8 nei?hbors
and the cell itsel

Thke focal cgll wirl1l be
taken over by whoever
. e . has the highest payoft

Die folgenden Abbildungen sind dem Buch M.A.Nowak ,,Evolutionary Dynamics™ entnommen.




Spatial Games




Vorlesung 9

Das in der vorigen Vorlesung betrachtete determunistische SIR-Model und die entsprechenden agenten-basierten
Computersumulationen stellten eine Beispielanwendung der Theorie der komplexen Netzwerke dar. In dieser und der darauf
folgenden Vorlesung werden wir die deterministische Beschreibung der evolutionire Spieltheorie (siehe Vorlesungen 3-5) in
dhnlicher Weise durch stochastische Computersimulationen darstellen, wobei wir uns 1 dieser Vorlesung aut symmetrische

(2x2)-Spiele auf einem raumlichen Gitter beschrinken. Die Verkniipfung der Theorie komplexer Netzwerke mit der
evolutioniren Spieltheorie stellt ein vielversprechendes mathematisches Modell dar, welches sowohl der mterdiszipliniren
Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschung dienen kann. In diesem Kapitel wird die
Vorgehensweise emer Mitembeziehung komplexer Netzwerktopologien in die evolutionare Spieltheorie beschreben. Die
dann auf emem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse kénnen in den meissten Fillen nur mittels
nummerischer, agenten-basierter Computersimulationen veranschaulicht werden. Nach einigen grundlegenden
Vorbemerkungen zur Evelutiondren Spieltheorie auf komplexen Netzwerken, werden wir zundchst die zeitliche Entwicklung von
raumlichen dominanten Spielen untersuchen und mit den Losungen der deterministischen evolutioniren Spieltheorie
vergleichen. Danach werden Koordinations- und Anti-Koordinationsspiele auf emnem rdumlichen Gitter simuliert und
analysiert.

Dominante raumliche Spiele

Wir betrachten zunichst em rAdumliches, leicht dominantes Spiel mut der im rechten Panel angegebenen Auszahlungsmatrix und
wihlen als Anfangskonfiguration der Strategienwahl der Spielerpopulation eine Konstellation, bet der nur ein Spieler die
dominante rote Strategie spielt und alle anderen Spieler die blaue Strategienwahl. Die Simulationen zeigen, dass V1 < ¢ < 1.2.1in
der zweiten Spielperiode em Rechteck aus 9 roten Knoten entsteht, welches aber dann schon in der dritten Spielperiode wieder
in einen einzelnen roten Zentrumsknoten tibergeht. Die linke untere Abbildung zeigt die raumliche Spielkonstellation zu
diesem Zestpunkt (¢ = 1.1), wobet die eingezeichneten §-Werte den erzielten kumulierten Auszahlungswerten der Spieler
entsprechen und die kleinen Vierecke innerhalb der groBen Vierecke die zuktinftige Strategienwahl der Spieler in der nichsten

Spielperiode angeben.

Vorlesung 9

Die Verkntiptung der Theorie der komplexen Netzwerke mit der
evolutioniren Spieltheorie wird in dieser Vorlesung an mehreren Beispielen
gezeigt. Die Entscheidungsprozesse der Spieler auf einem komplexen
Netzwerk kénnen nmuttels numerischer, agenten-basierter
Computerprogramme simuliert werden.

Wir betrachten zunichst emn evolutionires raumliches Spiel (siche Spatial
Games), wobei die Spieler einer endlich gro3en Population auf einem
raumlichen Gitter angeordnet und jeder Spieler nur mit seinen niachsten
Nachbarn spielen kann (Moore Nachbarschaff). Das zugrundeliegende
Netzwerk der Spielerknoten besitzt somit eine regulire Struktur und 1m
betrachteten 2-dimensionalen Fall spielt jeder Spieler pro Spielperiode mit
acht Spielern (Knotengrad k; = 8Vi € ).

Smiegier  Srmegez
aR

(1,1) (0, )

Wir beschrinken uns im
Folgenden auf
symmetrische 2x2-Spiele
und im ersten Unterpunkt
dieser Vorlesung (siche
linkes Panel) betrachten

wir im Speziellen ein

"leicht' dominantes Spiel

(c,0) (0.01,0.01)

- A

Spiel um eine Version des Gefangenendilemmas, wobei der Parameter ¢ > 1 die
Stirke der Dominanz der Strategie s9=Rof iiber die Strategie s;=Blan quantifiziert
(siehe Bestantwort-Pfeile in der nebenstehenden Auszahlungstabelle). Die
Spielerknoten spielen pro Iteration mit jedem threr Nachbarn und am Ende von
jedem Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit
den Nachbarspielern thres Umfeldes (Update Rule). Ist die Auszahlung emes

Spielers hoher als der eigene Auszahlungswert, so dndert der Spieler in der

mit nebenstehender

Auszahlungsmatrix. Es

handelt sich bet diesem

nichsten Spielperiode setne Strategie; ist sem eigener Wert der hochste, so bleibt
er auch in der nichsten Iteration bet seiner gespielten Strategie. Die
deterministische evolutionire Spieltheorie sagt fiir dominante Spiele voraus, dass
sich die zeitliche Entwicklung der Population zu einer evolutionir stabilen
Strategie entwickelt bei der alle Personen die dominante Strategie spielen (siehe
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II1.1.1 Spatial Games: Evolutioniire Spiele auf riumlichen Gitterstrukturen
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Anordung der 16 Spielerknoten auf einem 2 dlmensmnealen riumlichen Gitter (links) und das ensprechende Bild der erzeugten
Netzwerkstruktur (rechts).

In diesem Unterpunkt werden die Spieler einer endlich
groflen Population auf einem rdumlichen Gitter angeordnet,
wobeli jeder Spieler nur mit seinen nichsten Nachbarn
spielen kann (Moore Nachbarschaft). Das zugrundeliegende
Netzwerk der Spielerknoten besitzt somit eine regulire
Struktur und im betrachteten 2-dimensionalen Fall spielt
jeder Spieler pro Spielperiode mit acht Spielern (Knotengrad
k; = 8Vi € I). Die Anordnung und Nummerierung der
Spielerknoten auf dem 2-dimensionalen, sowie die
entstehende Netzwerkstruktur ist in der nebenstehenden
Abbildung fiir eine Population mit 16 Spielern dargestellt.
Wir beschrinken uns im folgenden auf symmetrische 2x2-
Spiele (siehe Teil I.1.4: Ansatz eines allgemeinen (2
Personen)-(2 Strategien) Spiels mit symmetrischer
Auszahlungsmatrix und Parametern a, b, ¢ und d). Die
Spielerknoten spielen pro Iteration mit jedem ihrer Nachbarn
und am Ende von jedem Zeitschritt vergleichen die Spieler
ihren summierten Gewinn/Verlust mit den Nachbarspielern
ihres Umfeldes. Ist die Auszahlung eines Spielers héher als
der eigene Auszahlungswert, so dndern der Spieler in der
nichsten Spielperiode seine Strategie; ist sein eigener Wert
der hochste, so bleibt er auch in der nichsten Iteration bei
seiner gespielten Strategie.

Das folgende Beispiel ist dem Kapitel 9: Spatial Games des




Mooresche Nachbarschaft
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Gefangenendilemma-ahnliches (2x2)-Spiel
Parameter ¢ > 1 : Stdrke der Dominanz der roten Strategie

Srdiegie1  Sategie2
R

(1, 1) (0, C)

(c 0) ¥(0.01,0.01)

- A
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Python
Progl’amm

jal Games

Spat

In diesem Python Programm wird die Menge der Spieler
(hier N=24) auf einem 2D-Gitter mit Moorschen
Nachbarschaftsbedingungen angeordnet (siehe S:147in
M.A.Nowak, , Evolutionary Dynamics"). In jeder Iterations-
periode spielt jeder Spieler mit seinen nachsten Nachbarn
ein symmetrisches (2x2)-Spiel. Am Ende einer Periode
vergleicht jeder Spieler seinen Gesamtgewinn mit seinen
Nachbarn und bestimmt in einem ,Update Rule" seine
Strategie in der nachsten Spielperiode.

Die rechte Simulation
benutzte die folgenden
Werte der Auszahlungs-
matrix (siehe linke Abb.):
a=1, b=0, c=1.1und d=0.01

Beachte!: Definition von b

und cist in M.A.Nowak,
~Evolutionary Dynamics"
vertauscht.

Update Rules und der Entscheidungsprozess

Spieler mit Knotennummer 8 hatte in der aktuellen Periode Strategie
.blau™ gespielt und eine gesamte Auszahlung von $=7 erhalten. Er
wird in der nachsten Periode ,rot" spielen (siehe kleines rotes
Kastchen), da einer seiner nachsten Nachbarn (Knoten 12) eine
hohere Auszahlung als er hatte und dieser die Strategie ,rot" spielte.
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! Bei grofderen Spielermengen ist es
“vorteilhaft die Angaben des 1 081
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Evolutionare Spieltheorie auf komplexen Netzwerken

Panel 1

VPSOC_GamesonNetwork_dominant_2025.py
VPSOC_GamesonNetwork_walker_2025.py

Das Python Programm visualisiert in vier
unterschiedlichen ,Panels" die Evolution
des ,Spatial Games". In Panel 1 wird die
zeitliche Entwicklung des
Populationsvektors x(t) veranschaulicht.
Panel 2 zeigt die Verteilungsfunktion der
Knotengrade P(k) des zugrundeliegenden
Moorschen Netzwerks. Panel 3 zeigt die
Entwicklung der Strategieentscheidung
der einzelnen Spielerknotenin der
benutzten raumlichen Anordnung. Panel 4
veranschaulicht dagegen die Menge der
Spielerin einem Kreis, geordnet nach ihrer
Knotenzahl.

Neben der Auszahlungsmatrix, den
implementierten Update Rules und der
zugrundeliegenden Netzwerkstruktur
hangt die zeitliche Entwicklung auch von
den gewahlten Anfangsbedingungen ab
(hier wurde ein roter Spieler in einem
Umfeld von blauen Spielern angeordnet).



Jupyter Notebook:
Physik der sozio-6konomischen Systeme mit dem Computer Evolutiondre raumliche Spiele

Klasse der dominanten Spiele

(Physics of Socio-Economic Systems with the Computer)

Vorlesung gehalten an der JW.Goethe-Universitat in Frankfurt am Main

(Wintersemester 2025/26)
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Einfiihrung

Die Verknipfung der Theorie komplexer Netzwerke (siehe Teil Il der Vorlesung) 20 srsprechen

Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschi iehung ka ie dann
auf einem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse ki 10 er Compu

In diesem Jupyter Notebook werden die Spieler einer endlich groBen Populatio n nachster werk
der Spielerknoten besitzt somit eine einfache regulare Struktur und im betracht 0 ern (Knotg 0 ' (2x2)-
Spiele und benutzen den Ansatz eines allgemeinen (2 Personen)-(2 Strategien) (-l] 2'0 4'0 6'0 lie Spielerk (-l] 2'0 4'0 6'0 m
Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit den Na “eigene Al itegie;

X X

ist sein eigener Wert der héchste, so bleibt er auch in der nachsten Iteration bel seiner gespielten Strategie.

Im Folgenden betrachten wir ein Beispiel, das an das 9. Kapitel des Buches Martin A. Nowak, Evolutionary Dynamics - Exploring the Equations of Life, 2006 angelehnt ist und ein Gefangenendilemma auf einem rdumlichen 2-dimensionalen Gitter
beschreibt. In Abhangigkeit der Starke der Dominanz der Strategie und der Anfangskonfiguration der Strategienwahl der Spieler sind unterschiedliche zeitlichen Entwicklungen der Population méglich. Wir nehmen im Folgenden ein dominantes,

symmetrisches 2x2-Spiel mit folgender Auszahlungsmatrix an:

. 1 0
§= (c 0.01)




Physik der sozio-6konomischen Systeme mit dem Computer

(Physics of Socio-Economic Systems with the Computer)

Vorlesung gehalten an der J.W.Goethe-Universitit in Frankfurt am Main

(Wintersemester 2025/26)

von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske
Frankfurt am Main 14.01.2026

Dritter Vorlesungsteil:

Evolutionare raumliche Spiele (spatial games)

Beispiel: Koordinations- und Anti-Koordinationsspiele

Einflihrung

Die Verknilpfung der Theorie komplexer Netzwerke (siehe Teil Il der Vorlesung) mit der evolutiondren Spieltheorie (sieh¢
Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschung dienen kann. In diesem Kapitel wird |
auf einem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse kénnen in den meisten Fallen lediglich mit

In diesem Jupyter Notebook werden die Spieler einer endlich groBen Population auf einem rdumlichen Gitter angeordng
der Spielerknoten besitzt somit eine einfache requlare Struktur und im betrachteten 2-dimensionalen Fall spielt jeder Sp
Spiele und benutzen den Ansatz eines allgemeinen (2 Personen)-(2 Strategien) Spiels mit symmetrischer Auszahlungsmg
Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit den Nachbarspielern ihres Umfeldes. Ist die Aus

ist sein eigener Wert der hachste, so bleibt er auch in der néchsten Iteration bei seiner gespielten Strategie.

Im Folgenden betrachten wir Beispiele von Koordinations- und Anti-Koordinationsspielen und vergleichen die zeitliche |
evolutionaren Spieltheorie (siehe Teil | der Vorlesung) betrachtete man eine unendlich grofie Population von Spielern, wi

Replikatordynamik konnten wir dann das zeitliche Verhalten des Populationsvektors @(t) (Anteil der Spieler, die die Stra

Wir nehmen im Folgenden ein allgemeines symmetrisches (2x2)-Spiel mit folgender Auszahlungsmatrix an:

- a b
)

x(t)

Jupyter Notebook:
Evolutionare raumliche Spiele
Klasse der Koordinations- und

Anti-Koordinationsspiele
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Weiterfithrende Links

Folien der 9. Vorlesung
Vorlesungsautzeichnung der 9.Vorlesung: 2
View Jupyter Notebook: Evolutiondre dominante rdumliche Spiele
Download Jupyter Notebook: Evolutiondre dominante raumliche Spiele
View Jupyter Notebook: Evolutiondre rdumliche Spiele: Koordinations- und Anti-Koordinationsspiele

3

Download Python Programm: Riumliches Spiel (mittleres Gi Walker-Anfangskonfiguration)

Download Python Programm: Raumliches Spiel (kleines Gitter mit Auszahlungen)

Download Python Programm: Raumliches Spiel (grofies Gitter): Version 1, Version 2
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