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9. Vorlesung



Plan für die heutige Vorlesung

• Kurze Wiederholung: Ausbreitung eines Virus auf einem 
komplexen Netzwerk

• Evolutionäre Spieltheorie auf komplexen Netzwerken

• Spiele auf einem räumlichen Netzwerk (Spatial Games)

• Dominante (2 x 2)-Spiele auf einem räumlichen Gitter

• Räumliche Koordinations- und Anti-Koordinationsspiele



• Ausbreitung eines Virus auf einem komplexen Netzwerk

• Einführung in die Epidemiologie

• Das deterministische SIR Modell

• Simulationsbasierte Ansätze
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Ausbreitung eines Virus auf 
einem komplexen Netzwerk

Die Geschichte der Pandemien



Allgemein: Ausbreitungsphänomene auf komplexen Netzwerken



Ausbreitung der 
Beulenpest

in den Jahren 1347-1351

Ausbreitung auf einem 
räumlichen 

Gitter-Netzwerk



Einführung in Teil III

Evolutionäre Spieltheorie 
auf komplexen Netzwerken

Die folgenden Beispiele sind an das Kapitel 9 im 
Buch  M.A.Nowak „Evolutionary Dynamics“  
(Kapitel 9: Spatial Games) angelehnt. 



Das Konzept der Quasi-Spezien 
(Ensemble von ähnlichen Genomen 
Sequenzen (Erbgut eines 
Lebewesens) welches durch einen 
Prozess der Mutation und Selektion 
entstanden ist) wurde von Manfred 
Eigen und Peter Schuster 
entwickelt. Die Struktur der Quasi-
Spezien Differentialgleichung ist 
den Gleichungen der evolutionären 
Spieltheorie sehr ähnlich. 



Populationsmodelle der 

epidemischen Ausbreitung



Online-Buch 'Network Science‘ von Albert-Laszlo Barabasi, 
Chapter 10: Spreading phenomenaDeterministische Modelle der 

epidemischen Ausbreitung

Die deterministischen Populationsmodelle der Epidemiologie
 basieren auf gewissen vereinfachten Grundannahmen.  

.

Die deterministischen Populationsmodelle der Epidemiologie
 basieren auf gewissen vereinfachten Grundannahmen.  

Susceptible (S: Gesunde Personen, die mit dem Virus noch keinen Kontakt hatten)
 Infected (I: Infizierte Personen, die mit dem Virus Kontakt hatten und andere anstecken 
können), Recovered (Personen, die infiziert waren aber nicht mehr infektiös sind und sich 
von der Krankheit erholt haben), Removed (R: Recovered + gestorbene Personen)

SIR Modell

SIS ModellSI Modell
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Das deterministische SIR Modell



Jupyter Notebook:

Das deterministische SIR Modell



Simulationsbasierte, Stochastische Modelle

Eine bedeutende Einschränkung des deterministischen SIR-
Modells der Virusausbreitung ist die im Modell angenommene 
vereinfachte Kontakt-Netzwerkstruktur der das Virus 
verbreitenden Personen. Die Ausbreitung eines 
Krankheitserregers (z.B. Covid-19 Virus), eines Computervirus 
im Internet oder eines Gerüchts ("Fake-News") in einem 
sozialen Netzwerk hängt jedoch stark von der Topologie des 
zugrundeliegenden komplexen Netzwerkes ab.

Die Grundhypothesen des SIR Modells sind in der Realität 
nicht erfüllt und beobachtbare Effekte, wie z.B. das Super-
Spreader Phänomen, können durch das SIR-Modell nicht 
beschrieben werden. 

Simulationsbasierte Modelle berechnen hingegen die 
Ausbreitung eines Krankheitserregers auf einer komplexen 
Netzwerkstruktur, wobei die einzelnen Personen in ihrem 
Mobilitäts- und Kontakt-Netzwerk eingebettet sind.



Simulationsbasierte, Stochastische Modelle

Eine der die Ausbreitung am stärksten bestimmende Größe ist 
die zugrundeliegende Kontakt-Netzwerkstruktur der das Virus 
verbreitenden Personen. 
In den simulationsbasierten Modellen kann man die 
Auswirkungen der Topologie des Kontakt-Netzwerks studieren. 
Die Verteilungsfunktion der Knotengrade spielt hierbei wieder 
eine bedeutende Rolle und kann mittels der 'degree block'-
Approximation analysiert werden (siehe Image 10.9 in Chapter 
10: Spreading phenomena).

http://networksciencebook.com/chapter/10
http://networksciencebook.com/chapter/10
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http://networksciencebook.com/chapter/10


Jupyter Notebook:

Ausbreitung eines Virus auf einem 

komplexen Netzwerk

Simulationsbasierte Lösungen



Wozu?
Evolutionäre Spieltheorie auf komplexen Netzwerken

Die deterministische evolutionäre Spieltheorie und die Differentialgleichung der Replikatordynamik benutzen ähnliche 
Annahmen wie das deterministische SIR-Modell der Ausbreitung eines Krankheitserregers auf einem komplexen Netzwerk. 
Beide mathematischen Modelle betrachten das zu  untersuchende System aus einer Art gemittelten Sichtweise und 
beschreiben es durch die kontinuierliche Populationsfunktionen, die Ihrerseits deterministischen Differentialgleichungen 
folgen. Die nötigen Voraussetzungen einer solchen Beschreibung sind hierbei die Folgenden:
• Jedes Individuum der Population kann mit jedem anderen in Kontakt treten, bzw.                                               

Jeder Spieler der Population kann mit jedem anderen das zugrundeliegende Spiel spielen
• Die Anzahl der Individuen/Spieler der Population ist unendlich groß
In dem, in dieser Vorlesung dargestelltem Jupyter Notebook „ Ausbreitung eines Virus auf einem komplexen Netzwerk 
(Simulationsbasierte Lösungen)“, hatten wir gesehen, wie eine Agentenbasierte Simulation des deterministischen SIR-Modells 
aussieht und inwieweit die simulierten Ergebnisse mit den Vorhersagen des mathematischen Modells übereinstimmen. 
Zusammenfassend ist hierbei festzuhalten, dass allein im Limes eines sehr großen, vollständig verbundenem Netzwerks, die 
Vorhersagen der deterministischen Populationsmodelle mit den Simulationsergebnissen übereinstimmen können.

Das Versagen der deterministischen Modelle zur Beschreibung eines realen Systems, zeigte sich in deutlicher Weise während der Covid-
Pandemie. Eine Physik der sozio-ökonomischen Systeme, deren Zweck darin besteht real-existierende Vorgänge zu beschreiben und zu 

analysieren, um so die zukünftige Entwicklung eines Populationsverhaltens vorhersagen zu können, ist somit auf simulationsbasierte Ansätze 
unter Verwendung komplexer Netzwerke angewiesen. Jedoch versagten auch die meisten simulationsbasierten Modelle, da das reale Verhalten 
der Population komplizierter ist. So änderte sich z.B. das Kontaktnetzwerk nicht nur allein durch die verordnete Kontaktbeschränkung, sondern 

auch durch die mediale Verbreitung einer hohen Gefahr der Ansteckung.  Die Rolle der Medien (beschränkte/selektive 
Informationsausbreitung), und als Folge die Gruppenbildung (siehe „Formation of Communities“) und die mit ihr einhergehende 

„Parallelweltbild-Entstehung“ innerhalb der Sub- Communities (z.B. „Medienkritische-Gruppe“ vs. „Medienkonforme-Gruppe“) sind nur einige 
Beispiele der komplexen Realität.



Evolutionäre Spieltheorie auf 
komplexen Netzwerken

zeitliche
Entwicklung 
der
Population auf 
vorgegebener 
Netzwerkstruktur

Mögliche Strategien: (grün , schwarz), Parameter t stellt die „Zeit“ dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie „grün“ spielen.
Die roten Verbindungslinien beschreiben die möglichen Spielpartner des Spielers

x(0)=0.5 x(10)=0.75

Viele in der Realität vorkommende evolutionäre Spiele werden auf einer definierten 
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind 
hierbei nicht gleichwertig, sondern wählen als Spielpartner nur mit ihnen durch das 
Netzwerk verlinkte (verbundene) Partner aus.



Wiederholung: Evolutionäre Spieltheorie
Symmetrische (2x2)-Spiele einer Population

Die evolutionäre Spieltheorie betrachtet die zeitliche Entwicklung des 
strategischen Verhaltens einer gesamten Spielerpopulation.

zeitliche
Entwicklung 
der
Population

Mögliche Strategien: (grün , schwarz), Parameter t stellt die „Zeit“ dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie „grün“ spielen.

x(0)=0.15 x(10)=0.5



Die einzelnen Akteure innerhalb der betrachteten Population spielen ein 
andauernd sich wiederholendes Spiel miteinander, wobei sich jeweils zwei 
Spieler zufällig treffen, das Spiel spielen und danach zu dem nächsten 
Spielpartner wechseln .

Das evolutionäre Spiel schreitet voran und die grüne Strategie wird für die Spieler 
zunehmend attraktiver. Zum Zeitpunkt t=10 spielen schon 50% grün. 

x(0)=0.15 x(10)=0.5

Die 
Anfangspopulat
ion von Spielern 
spielt zum 
Zeitpunkt t=0 
das erste Mal 
das Spiel. Die 
Spieler wählen 
im Mittel zu 
15% die grüne 
Strategie.

Evolutionäre Spieltheorie
Symmetrische (2x2)-Spiele einer Population



Weitere





Replikatordynamik
(für das Gefangenendilemma)
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Die Differentialgleichung der Replikatordynamik 
für das Gefangenendilemma lautet:

Beispiel: Gefangenendilemma
g(x)=g(x(t)) im Bereich [0,1] dargestellt

x(t) für unterschiedliche 
Anfangspopulationen x(0)
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Replikatordynamik
(für das Hirschjagt-Spiel)
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Die Differentialgleichung der Replikatordynamik 
für das Hirschjagt-Spiel lautet:

Beispiel: Hirschjagt-Spiel
g(x)=g(x(t)) im Bereich [0,1] dargestellt

x(t) für unterschiedliche 
Anfangspopulationen x(0)
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Hasen (2 , 2) (4 , 0)
Hirsch (0 , 4) (5 , 5)



Replikatordynamik
(für das Angsthasen-Spiel)
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Die Differentialgleichung der Replikatordynamik 
für das Angsthasen-Spiel lautet:

Beispiel: Angsthasen-Spiel
g(x)=g(x(t)) im Bereich [0,1] dargestellt

x(t) für unterschiedliche 
Anfangspopulationen x(0)
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Klassifizierung von evolutionären, 
symmetrischen (2x2)-Spielen

o Dominante Spiele 
(2. Strategie dominiert 1.Strategie)

Es existiert ein Nash - Gleichgewicht, welches 
die anderen Strategien dominiert. ESS 
bei x=0.

o Koordinationsspiele
Es existieren drei Nash – Gleichgewichte und 

zwei reine ESS, die abhängig von der 
Anfangsbedingung realisiert werden.

o Anti – Koordinationsspiele
Es existieren drei Nash – Gleichgewichte aber 

nur eine gemischte ESS, die unabhängig 
von der Anfangsbedingung realisiert 
wird.

o Dominante Spiele 
(1. Strategie dominiert 2.Strategie)

Es existiert ein Nash - Gleichgewicht, welches 
die anderen Strategien dominiert. ESS 
bei x=1.



o Dominante Spiele 
(2. Strategie dominiert 1.Strategie)

Es existiert ein Nash - Gleichgewicht, welches 
die anderen Strategien dominiert. ESS bei 
x=0.

o Koordinationsspiele
Es existieren drei Nash – Gleichgewichte und 

zwei reine ESS, die abhängig von der 
Anfangsbedingung realisiert werden.

o Anti – Koordinationsspiele
Es existieren drei Nash – Gleichgewichte aber 

nur eine gemischte ESS, die unabhängig 
von der Anfangsbedingung realisiert wird.

Das Kapitel 4 (Evolutionary Games) in dem 
Buch M.A.Nowak „Evolutionary 
Dynamics“ befasst sich mit Spieltheorie 
(siehe Teil I der Vorlesung)



Lösen des evolutionären Spiels 
mit Python



Evolutionäre Spieltheorie auf 
komplexen Netzwerken

zeitliche
Entwicklung 
der
Population auf 
vorgegebener 
Netzwerkstruktur

Mögliche Strategien: (grün , schwarz), Parameter t stellt die „Zeit“ dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie „grün“ spielen.
Die roten Verbindungslinien beschreiben die möglichen Spielpartner des Spielers

x(0)=0.5 x(10)=0.75

Viele in der Realität vorkommende evolutionäre Spiele werden auf einer definierten 
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind 
hierbei nicht gleichwertig, sondern wählen als Spielpartner nur mit ihnen durch das 
Netzwerk verlinkte (verbundene) Partner aus.



Spatial Games

Die folgenden Abbildungen sind dem Buch M.A.Nowak „Evolutionary Dynamics“ entnommen. 

Das Kapitel 9 in dem Buch M.A.Nowak „Evolutionary 
Dynamics“ handelt über Spatial Games



Spatial Games







Mooresche Nachbarschaft 



Spatial Games

VPSOC_GamesonNetwork_2025.py



Gefangenendilemma-ähnliches (2x2)-Spiel 
Parameter c > 1 : Stärke der Dominanz der roten Strategie



In diesem Python Programm wird die Menge der Spieler 
(hier N=24) auf einem 2D-Gitter mit Moorschen 
Nachbarschaftsbedingungen angeordnet (siehe S:147 in 
M.A.Nowak, „Evolutionary Dynamics“).  In jeder Iterations-
periode spielt jeder Spieler mit seinen nächsten Nachbarn 
ein symmetrisches (2x2)-Spiel. Am Ende einer Periode 
vergleicht jeder Spieler seinen Gesamtgewinn mit seinen 
Nachbarn und bestimmt in einem „Update Rule“ seine 
Strategie in der nächsten Spielperiode.  

 Die rechte Simulation 
benutzte die folgenden 
Werte der Auszahlungs-
matrix (siehe linke Abb.): 
a=1, b=0, c=1.1 und d=0.01

Beachte!: Definition von b 
und c ist in M.A.Nowak, 
„Evolutionary Dynamics“ 
vertauscht. 

Update Rules und der Entscheidungsprozess
Spieler mit Knotennummer 8 hatte in der aktuellen Periode Strategie 
„blau“ gespielt und eine gesamte Auszahlung von $=7 erhalten. Er 
wird in der nächsten Periode „rot“ spielen (siehe kleines rotes 
Kästchen), da einer seiner nächsten Nachbarn (Knoten 12) eine 
höhere Auszahlung als er hatte und dieser die Strategie „rot“ spielte.



Zusammenfassung von Teil II 

c=1.1



Zusammenfassung von Teil II 



Zusammenfassung von Teil II 



Zusammenfassung von Teil II 



Zusammenfassung von Teil II 



Zusammenfassung von Teil II 



Zusammenfassung von Teil II 



Zusammenfassung von Teil II 



Spatial GamesBei größeren Spielermengen ist es 
vorteilhaft die Angaben des 
Knotengrades und die erzielte 
Auszahlung bei der Visualisierung 
nicht anzugeben. Die zukünftige 
Entscheidung ist hier nicht durch 
kleine Kästchen markiert. 



Evolutionäre Spieltheorie auf komplexen Netzwerken
Das Python Programm visualisiert in vier 
unterschiedlichen „Panels“ die Evolution 
des „Spatial Games“. In Panel 1 wird die 
zeitliche Entwicklung des 
Populationsvektors x(t)  veranschaulicht. 
Panel 2 zeigt die Verteilungsfunktion der 
Knotengrade P(k) des zugrundeliegenden 
Moorschen Netzwerks. Panel 3 zeigt die 
Entwicklung der Strategieentscheidung 
der einzelnen Spielerknoten in  der 
benutzten räumlichen Anordnung. Panel 4 
veranschaulicht dagegen die Menge der 
Spieler in einem Kreis, geordnet nach ihrer 
Knotenzahl.

Neben der Auszahlungsmatrix, den 
implementierten Update Rules und der 
zugrundeliegenden Netzwerkstruktur 
hängt die zeitliche Entwicklung auch von 
den gewählten Anfangsbedingungen ab 
(hier wurde ein roter Spieler in einem 
Umfeld von blauen Spielern angeordnet).

Panel 4

Panel 1

Panel 2

Panel 3

VPSOC_GamesonNetwork_dominant_2025.py
VPSOC_GamesonNetwork_walker_2025.py



Jupyter Notebook:

Evolutionäre räumliche Spiele

Klasse der dominanten Spiele



Jupyter Notebook:

Evolutionäre räumliche Spiele

Klasse der Koordinations- und 

Anti-Koordinationsspiele
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