Physik der

s0zio-0konomischen Systeme

mit dem Computer

JOHANN WOLFGANG GOETHE UNIVERSITAT
0092026

MATTHIAS HANAUSKE

FRANKFURT INSTITUTE FOR ADVANCED STUDIES
JOHANN WOLFGANG GOETHE UNIVERSITAT
INSTITUT FUR THEORETISCHE PHYSIK
ARBEITSGRUPPE RELATIVISTISCHE ASTROPHYSIK
D-60438 FRANKFURT AM MAIN
GERMANY

11. Vorlesung




Plan fUr die heutige Vorlesung

* Kurze Wiederholung

* Evolutionare Spieltheorie auf komplexen Netzwerken
* Spiele auf einem raumlichen Netzwerk (Spatial Games)
* Dominante (2 x 2)-Spiele auf einem raumlichen Gitter
* Raumliche Koordinations- und Anti-Koordinationsspiele

* Symmetrische (2 x 3)-Spiele auf einem raumlichen Netzwerk
* Spiele auf vollstandig verbundenen Netzwerken
* Spiele auf zufalligen, ,kleine Welt" und skalenfreien Netzwerken

* EinfUhrung in die Quanten Spieltheorie

* Raumliche Quantenspiele (Spatial Quantum Games)




Evolutionare Spieltheorie auf

"~ komplexen Netzwerken

Viele in der Realitat vorkommende evolutionare Spiele werden auf einer definierten
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind
hierbei nicht gleichwertig, sondern wahlen als Spielpartner nur mit ihnen durch das
Netzwerk verlinkte (verbundene) Partner aus.

[ == /

zeitliche
Entwicklung

der

Population auf
vorgegebener
Netzwerkstruktur

x(0)=0.5 x(10)=0.75

Mogliche Strategien: (griin , schwarz), Parameter t stellt die ,Zeit dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie ,,griin“ spielen.
Die roten Verbindungslinien beschreiben die moglichen Spielpartner des Spielers
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Einfiihrung

Die Verknipfung der Theorie komplexer Netzwerke (siehe Teil Il der Vorlesung) 20 srsprechen

Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschi iehung ka ie dann
auf einem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse ki 10 er Compu

In diesem Jupyter Notebook werden die Spieler einer endlich groBen Populatio n nachster werk
der Spielerknoten besitzt somit eine einfache regulare Struktur und im betracht 0 ern (Knotg 0 ' (2x2)-
Spiele und benutzen den Ansatz eines allgemeinen (2 Personen)-(2 Strategien) (-l] 2'0 4'0 6'0 lie Spielerk (-l] 2'0 4'0 6'0 m
Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit den Na “eigene Al itegie;

X X

ist sein eigener Wert der héchste, so bleibt er auch in der nachsten Iteration bel seiner gespielten Strategie.

Im Folgenden betrachten wir ein Beispiel, das an das 9. Kapitel des Buches Martin A. Nowak, Evolutionary Dynamics - Exploring the Equations of Life, 2006 angelehnt ist und ein Gefangenendilemma auf einem rdumlichen 2-dimensionalen Gitter
beschreibt. In Abhangigkeit der Starke der Dominanz der Strategie und der Anfangskonfiguration der Strategienwahl der Spieler sind unterschiedliche zeitlichen Entwicklungen der Population méglich. Wir nehmen im Folgenden ein dominantes,

symmetrisches 2x2-Spiel mit folgender Auszahlungsmatrix an:

. 1 0
§= (c 0.01)
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Dritter Vorlesungsteil:

Evolutionare raumliche Spiele (spatial games)

Beispiel: Koordinations- und Anti-Koordinationsspiele

Einflihrung

Die Verknilpfung der Theorie komplexer Netzwerke (siehe Teil Il der Vorlesung) mit der evolutiondren Spieltheorie (sieh¢
Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschung dienen kann. In diesem Kapitel wird |
auf einem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse kénnen in den meisten Fallen lediglich mit

In diesem Jupyter Notebook werden die Spieler einer endlich groBen Population auf einem rdumlichen Gitter angeordng
der Spielerknoten besitzt somit eine einfache requlare Struktur und im betrachteten 2-dimensionalen Fall spielt jeder Sp
Spiele und benutzen den Ansatz eines allgemeinen (2 Personen)-(2 Strategien) Spiels mit symmetrischer Auszahlungsmg
Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit den Nachbarspielern ihres Umfeldes. Ist die Aus

ist sein eigener Wert der hachste, so bleibt er auch in der néchsten Iteration bei seiner gespielten Strategie.

Im Folgenden betrachten wir Beispiele von Koordinations- und Anti-Koordinationsspielen und vergleichen die zeitliche |
evolutionaren Spieltheorie (siehe Teil | der Vorlesung) betrachtete man eine unendlich grofie Population von Spielern, wi

Replikatordynamik konnten wir dann das zeitliche Verhalten des Populationsvektors @(t) (Anteil der Spieler, die die Stra

Wir nehmen im Folgenden ein allgemeines symmetrisches (2x2)-Spiel mit folgender Auszahlungsmatrix an:

- a b
)

x(t)

Jupyter Notebook:
Evolutionare raumliche Spiele
Klasse der Koordinations- und

Anti-Koordinationsspiele
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Weiterfithrende Links

Folien der 9. Vorlesung
Vorlesungsautzeichnung der 9.Vorlesung: 2
View Jupyter Notebook: Evolutiondre dominante rdumliche Spiele
Download Jupyter Notebook: Evolutiondre dominante raumliche Spiele
View Jupyter Notebook: Evolutiondre rdumliche Spiele: Koordinations- und Anti-Koordinationsspiele

3

Download Python Programm: Riumliches Spiel (mittleres Gi Walker-Anfangskonfiguration)

Download Python Programm: Raumliches Spiel (kleines Gitter mit Auszahlungen)

Download Python Programm: Raumliches Spiel (grofies Gitter): Version 1, Version 2



Vorlesung 10

In dieser Vorlesung wird nun die zeitliche Entwicklung der Strategienwahl der Population auf unterschiedlichen Netzwerktopologien
analysiert und mit den Lésungen der deterministischen evolutiondren Spieltheorie verglichen. Zunichst betrachten wir evolutionire
symmetrische (2 x 2) Spiele und dann, im zweiten Unterpunkt, analysieren wir symmetrische (2 x 3) Spielen auf rdumlichen
Gitterstrukturen und anderen Netzwerk-Topologien.

Evolutionire symmetrische (2 x 2) Spiele auf unterschiedlichen Netzwerk-Topologien

Im Jupyter Notebook Evolutionire Spiele auf unterschiedlichen Netzwerk-Topologien werden evolutionire, symmetrische (2 x 2) Spiele
auf unterschiedlichen Netzwerkklassen simuliert. Die evolutiondre Entwicklung der Strategienwahl der Spieler wird sowohl auf zufilligen,
'kleine Welt', skalenfreien, als auch auf vollstindig verbundene Netzwerkstrukturen simuliert und mit den Resultaten der deterministischen
evolutioniren Spieltheorie verglichen. Es zeigt sich hierbei, dass die simulierten Spiele auf vollstindig verbundene Netzwerken gut mit den

Ergebnissen der Replikatordynamik tibereinstimmen. Die unten dargestellte Animation zeigt die evolutionire Entwicklung eines leicht
dominanten Spiels (¢ = 1.66, sieche rechtes Panel der vorigen Vorlesung) auf einem skalenfreien Netzwerk. Bei den rdumlichen Spielen
entwickelte sich die Population zu einem Endzustand, bei dem alle Spieler die rote Strategie wihlten. Die zeitliche Ausbreitung der roten
Strategie auf einem skalenfreien Netzwerk hingt stark von der Anfangskonfiguration ab. In der unten dargestellten Animation wurde eine
Anfangskonfiguration gewihlt, bei der lediglich der Spieler mit dem gréften Knotengrad (der Hub des skalenfreien Netzwerks) die rote

Strategie wahlt.
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Man erkennt, im Gegensatz zu der zeitlichen Entwicklung im raumlichen Spiel, dass sich die rote Strategie nicht tiber die gesamte
Population ausbreiten kann.

Vorlesung 10

Die zeitliche Entwicklung der Strategienwahl einer Population mittels eines
analytischen mathematischen Modells abzubilden, ist das Bestreben der
evolutioniren Spieltheorie und die numerischen Lésungen der Replikatordynamik
stellen Vorhersagen innerhalb der Modellvorstellung dieses Modells dar. Die in der
Vortlesung besprochenen Modelleinschrinkungen des deterministischen
analytischen Modells legten dann eine stochastische Agenten-basierte Simulation
nahe und in dieser Vorlesung analysieren wir evolutionire Spiele auf
unterschiedlichen Netzwerk-Topologien und vergleichen die simulierte Entwicklung
der Population mit den Lésungen der deterministischen evolutioniren Spieltheorie.

In dieser Vorlesung werden sowohl evolutionire symmetrische (2 x 2), als auch (
2 x 3) Spiele auf unterschiedlichen Netzwerk-Topologien simuliert (siehe linkes
Panel dieser Vorlesung). Dabei zeigen die raumlichen und Netzwerk-Simulationen
oft eine qualitative Ubereinstimmung mit den Vorhersagen der deterministischen
evolutioniren Spieltheorie, wobei bei einigen Systemkonstellationen jedoch auch
Unterschiede auftreten. Die unten dargestellten Animationen stellen zwel
Simulationen symmetrischer (2 x 3) Spiele der Zeeman-Klasse 18 (siehe Vorlesung
5) dar, wobei bei der linken Abbildung eine rdumliche Gitterstruktur zugrunde liegt
und die rechte Simulation ein zufilliges Netzwerk verwenden.
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Evolutionire symmetrische (2 x 3) Spiele auf unterschiedlichen Netzwerk-Topologien

In den Python Programmen SpatialGame_2x3.py und NetworkGame_2x3.py werden evolutionire, symmetrische (2 x 3) Spiele auf
raumlichen Gitterstrukturen und anderen Netzwerk-Topologien simuliert. Da die determuinistische Replikatordynamik symmetrischer (2 x 3)
Spiele bereits 19 unterschiedliche Spielklassen erlaubt (siehe Vorlesung 5), gibt es, mittels der stochastischen Simulationen, eme grofie Zahl
von moéglichen zeitlichen Entwicklungen der Population. Die unten dargestellten Animationen stellen dreir Simulationen der Zeeman-Klasse
1 dar, wobe1 ber der linken Abbildung eme rdumliche Gitterstruktur zugrunde liegt, die mittlere Animation em zufilliges Netzwerk und die
rechte Simulation ein skalenfreies Netzwerk verwenden.

Sowohl bei den raumlichen als auch bei den
Netzwerk-Simulationen zeigt sich oft eine qualitative Ubereinstimmung mit den Vorhersagen der deterministischen evolutioniren
Spieltheorie.
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def create_grid(width, height):
63 g - nx.Graph( )|
nkn = width = height
ol S for i in range(width): _

i for j in range(height): ’ ch l el e nEng o
e i i 4 Eeightg j def find_nash_equilibria(D):

g.add_node(k) equilibria []
for i in range(width): # B ~h i el lash-
for j in range(height): for i in range(D.shape[0]):
center = 1 * height + j for j in range(D.shape[8]):
neighbors = [ _ _ _ if D[i, j] == max(D[:, j1):
({(i-1) % width) = height + (j-1) % height, # if D[], il max(D[:, i]):

(i % width) * height + {(j-1) % height,
((i+1) % width) = height + (j-1) % height,
((i+1) % width) = height + (j % height),

s': (i+1,j+1)})

equilibria.append({'type': 'pure’,

((1+1) % width) * height + (j+1) % height, # Loes_GN = []
{i % width) * height + (j+1) = height, ®1,%x2,x3,y1,y2,y3 = symbols({'x_1,x 2,x 3,y 1,y 2,y _3')
({(i-1) % width) * height {j+1) % height, # X5 Matrixi{[=1,x2,x3])
' {({i-1) % width) * height + (j % height) # ys = Matrix([y1l,y2,y3])
1 _ _ Dollar_A = transpose(xs)*D*ys
for ?Elgh_i“ neighbors: B Dollar_As = Dollar_A.subs(x3,1-x1-x2).subs(y3,1-y1-y2)[0]
if neigh center: le selbst-tdges Dollar_As_1 = Dollar_A.subs(x1,0).subs(x3,1-x2).subs{y3,1-y1-y2)[0]

g-add_edge(center, neigh) Dollar_As_2 = Dollar_A.subs(x2,0).subs(x3,1-x1).subs(y3,1-y1-y2)[0]

Dollar_As_3 = Dollar_A.subs(x3,0).subs{x2,1-x1).subs{y3,1-y1-y2)[0]
GemNash_Eql = Eqi{Dollar_As.diffi(x1),0)

GemNash_Eq2 = Eq{Dollar_As.diff(x2),0)

GemNash_Eq_1 = Eq{Dollar_As_1.diff(x2),0)

GemMNash_Eqg_2 Eqi{Dollar_As_2.diff(x1),0)

GemNash_Eq_3 = Eq{Dollar_As_3.diff(x1),0)

Bed=Eq(1,yl+y2+y3)
Loes_GN.append(solve([GemNash_Eql,GemNash_Eq2,Bed]))

Bed_a=Eq(0,y1)

Bed_b=Eq(1,y2+y3)

3 % 2 o » 106 return g
e —

SpatialGame_2x3.py
home * hanauske * neu_2025 » WVPSOC_2025 * Vorlesungen *> 11 SpatialGame_2x3.py

——

nport networkx as nx
nport matplotlib.pyplot as plt

from random import randint, uniform Loes_GN.append(solve([GemNash_Eq_1,Bed_a,Bed_b]})
from math import isclose Bed_a=Eq(0,y2)
import numpy as np Bed_b=Eq(1,yl+y3)
from matplotlib import rcParams Loes_GN.append(solve([GemNash_Eq_2,Bed_a,Bed_b]})
import matplotlib.gridspec as gridspec Bed_a=Eq(0,y3)
from scipy.integrate import solve_ivp Bed_b=Eq(1,yl+y2)
import os Loes_GN.append(solve([GemNash_Eq_3,Bed_a,Bed_b]))
from sympy import symbols, Matrix, Eq, transpose, solve for 1 in Loes_GN:
15 import matplotlib.colors as culur5| if 1 and 0 1[y1] 1 and 0 1[y2] 1 and 1[y3] 1:
equilibria.append({ ' type': 'mixed', 's*': {1[y1],1[y2]1,1[y31}})
# 1 rentris - return equilibria
def xylwvx):

return [vx[1]+wx[2]/2,vx[2]1]




Vorlesung 11

Da wir im Laute der Vorlesungsreithe nun an emem Punkt angekommen sind, bet dem die verwendeten Programme sehr
umfangreich und untibersichtlich geworden sind, ist es sinnvoll, am Ende einige Zeit mit der Strukturierung von
Computerprogrammen zu verbringen. Das Paradigma der Objekt-orientierten Programmiernng und das Konzept der Klasse wird in
dieser Vorlesung behandelt. Danach befassen wir uns mit der Owanten Spielthearre. Zunichst wird der mathematische
Formalismus eines (2 Personen)-(2 Strategien) Quantenspiels vorgestellt. Dann wenden wir den quantenspieltheoretischen
Formalismus auf dominante, Koordinations- und Anti-Koordinationsspiele an. Wir werden sehen, dass wenn die
Strategieverschrinkung der Spieler nur groll genug ist, kénnen zusitzliche Nash-Gleichgewichte eatstehen und zuvor
vorhanden Nash-Gleichgewichte verschwinden. Ungtinstige, Dilemma-artige Situationen und nicht vorteilhafte evolutionir
stabile Strategien kénnen sich ab definierten Verschrankungsbarrieren auflésen.

Einfiirung in die Objekt-orientierte Programmierung

Die meisten Programmiertechniken, die wir bis jetzt kennengelernt haben, verwendeten den Programmentwurfstil der
prozeduralen Programmierung und wir benutzten meist die Programmiersprache Python bzw. verwendeten Python Jupyter
Notebooks. Wir werden nun den Fokus auf die Strukturierung von Programmen legen (das Programmuerparadigma der
objektorientierten Programmuerung) und das Klassenkonzept kennenlernen. Das Konzept der objektorientierten
Programmierung beruht auf der alltaglichen Erfahrung, dass man Objekte nach zwei MalBistiben beurteilt: Ein Objekt besitzt
einerseits messbare Eigenschaften und ist aber auch andererseits tiber seine Verhaltensweisen definiert. Eme Kiasse st emn
benutzerdefinierter nener Datentyp, der durch das Schlisselwort 'class' gekennzeichnet wird und die gesamte Idee der
objektorientierten Programmierung beruht ginzlich auf diesem Konzept der Kiasse. In einer Klasse werden die messbaren
Eigenschaften des Objektes i Instanzvariablen (Daten-Member) gespeichert und durch Konstruktoren werden diese Daten-
Member dann initialisiert. Die Verhaltensweisen des Objektes werden durch klasseninterne Funktionen, die sogenannten

Member-Funktionen, beschrieben. In dem folgenden Link werden die Grundlagen der Objekt-orientierten Programmierung
allcemein am Beispiel von C++ Klassen vorgestellt. Eine Anwendung der Objekt-orientierten Programmierung ist 1n dem
Python Programm Réumliches symmetrisches (2 x 2)-Spiel mit Klassenstruktur (SpatialGame 2x2 Class.py) zu finden.

Der mathematische Formalismus eines (2 Personen)-(2 Strategien) Quantenspiels

Um die mathematische Beschreibung des quantenspieltheoretischen Modells
(stehe rechtes Panel dieser Vorlesung) zu verdeutlichen, wird im Folgenden ein
(2 Personen)-(2 Strategien) Quantenspiel betrachtet. In dem Jupyter Notebook

Quanten Spieltheorie werden die Entscheidungsoperatoren der Spieler muttels

s der beiden Entscheidungswinkeln 6, und ¢, (u = A, B fiir Spieler A und B) wie

9s ([0, pi) . (pe.8)]107 (- 1"gens2)) . exp il DS Y

Vorlesung 11

Sowohl die deterministische evolutionire Spieltheorie, als auch die
Spieltheorie auf komplexen Netzwerken zeigt, dass die
Strategienentwicklung von Populationen sich zu Dilemma-artige Situationen
entwickeln kénnen. Die emzelnen Spieler der Population sehen sich
(aufgrund der Dilemma-artigen Struktur der Auszahlungsmatrix)
gezwungen eine Strategie zu wihlen, in der jeder emzelne Spieler und somut
die gesamte Population emen geringen Nutzen erhielt, obwohl ein
vorteilhafterer Zustand moglich wire. In dieser Vorlesung betrachten wir
die Onantenspieltheorie, die emen speziellen mathematischen Formalismus
bereitstellt, um kooperative Effekte in die Spieltheorie miteinzubeziehen.
Die Quantenspieltheorie stellt eine mathematische und konzeptuelle
Erweiterung der klassischen Spieltheorie dar. Der Raum aller denkbaren
Entscheidungswege der Spieler wird vom rein reellen, messbaren Raum mn
den Raum der komplexen Zahlen (reelle und imaginire Zahlen) ausgedehnt.
Durch das Konzept der moglichen quantentheoretischen Verschrinkung der
Entscheidungswege 1m imaginiren Raum aller denkbaren Quantenstrategien
kénnen gemeinsame, durch kulturelle oder moralische Normen entstandene
Denkrichtungen in die evolutionire Dynamik mit emnbezogen werden. Tst
die Strategienverschrinkung der Spieler im imaginidren Raum der denkbaren
Entscheidungswege nur gentigend grol3, so kénnen zusitzliche Nash-
Gleichgewichte auftreten und zuvor existente dominante Strategien sich
aufldsen.

Basisvektoren

1 B
|5| 51) .
Zwel Spieler
Zustandsfunktion

W) =
T Us @Up) T |1 sh)

Die obere Abbildune zeiot den Spielbaum eines (2 Personen)-(2 Stratecien)




Einfiihrung in die Programmierung fiir Studierende der Physik

Einfiirung in die Objekt-orientierte Programmierung -
S Vorlesung:

Die meisten Programmiertechniken, die wir bis jetzt kennengelernt haben,
verwendeten den Programmentwurfstil der prozeduralen Programmierung
und wir benutzten meist die Programmiersprache Python bzw. verwendeten
Python Jupyter Notebooks. Wir werden nun einerseits den Fokus immer
mehr auf die Strukturierung von Programmen legen (das
Programmierparadigma der objektorientierten Programmierung) und dies )
zunichst am Beispiel des in C++ integrierten Klassenkonzept beschreiben.
Das Konzept der objektorientierten Programmierung beruht auf der
alltaglichen Erfahrung, dass man Objekte nach zwei Maf3stdben beurteilt:

Ein Objekt besitzt einerseits messbare Eigenschaften und ist aber auch
andererseits liber seine Verhaltensweisen definiert. Eine C++ Klasse ist ein + +
benutzerdefinierter neuer Datentyp, der durch das Schliisselwort 'class'

gekennzeichnet wird und die gesamte Idee der objektorientierten
Programmierung beruht ginzlich auf diesem Konzept der K/asse. In einer
C++ Klasse werden die messbaren Eigenschaften des Objektes in
Instanzvariablen (Daten-Member) gespeichert und durch Konstruktoren
werden diese Daten-Member dann initialisiert. Die Verhaltensweisen des
Objektes werden durch klasseninterne Funktionen, die sogenannten
Member-Funktionen beschrieben. In dem folgenden Link werden die
Grundlagen der Objekt-orientierten Programmierung und C++ Klassen
allgemein vorgestellt und die dort besprochenen Konzepte werden in den
ndchsten Vorlesungen benutzt, um das Verhalten der Spieler auf einem
komplexen Netzwerk in Objekt-orientierter Weise in den C++ und Python
Programmen zu implementieren. Nichster Zoom Link am 14.07.2022, 14:00-16:00 Ubx: ID: 794 847 5614, PWD: 785453

Thustration: Deborah Moldawski

Die Vorlesung Esnfiibrung in dee Py wng fiir Studserende der Physik stellt ein Pilichtmodul im Bachelor Studium Physik der Goethe-Universitit Frankfurt dar. Be regelmiliger
und erfolgreicher Teilnahme an den Ubungen/Praktika erhalten Sie eine Zulassung zur Klausur. Den benoteten Schein und sechs Creditpoints erhilt man schlieBlich bes
bestandener Klausur. Falls Sie bereits in einem vergangenen Semester (nach der alten Studienordnung) die Zulassung zur Klausur erhalten haben, kénnen Sie direkt an der
abschhielenden Klausur teilnehmen. Jedoch rate ich Thnen, die Vorlesung und die Ubungen,/Praktka trotzdem nochmals zu belegen, da sich die Inhalte und Schwerpunkte zu den

vergangenen Vorlesungen unterscheiden kénnten.
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Objekt-orientierte Programmierung und C++ Klassen

Einfiihrung

Die C++ Typen, die wir bisher kennengelernt hatten (z.B. int i, double a, int v[3], double A[4][5]), die sogenannten inregrierien Typen, werden wir nun mittels eines _Abstraktionsmechanismus erweitern, um eigene, benutzerdefinierte Typen zu
erstellen. Ein benutzerdefinierter Typ, wie z.B. die C++ Struktur 'struct’ oder die C++ Klasse 'class', ist ein Abstraktionskonzept, das den Quelltext eines C+ Programms tibersichtlicher macht, indem es das Programm in voneinander separierbare
Teilbereiche aufteilt. Grolle Programme bestehen oft aus einzelnen Teilaufgaben, die man mittels einer sinnvollen Klassenstruktur voneinander trennen und ordnen kann. Eine C++ Kiasse ist emn benutzerdefinierter neuer Datentyp, der durch
das Schliisselwort 'class' gekennzeichnet wird und die gesamte Idee der objektorientierten Programmierung beruht ginzlich auf diesem Konzept der Kiasse.

Benutzerdefinierte Typen und Abstraktionsmechanismen in C++

Das Konzept der objekiorientierten Programmiernng beruht auf der alltiglichen Erfahrung, dass man Objekte nach zwei Malstiben beurteilt: Ein Objekt besitzt einerseits messbare Eigenschaften (z.B. Farbe, Gewicht, _..) und ist aber auch
andererseits iiber seine Verhaltensweisen (z.B. zeitliches Verhalten, Interaktionsverhalten, Bewegungsverhalten, ...) definiert. Eine Klasse ist ein abstrakter Oberbegriff fiir die Beschreibung der gemeinsamen Struktur und des gemeinsamen
Verhaltens von realen/fiktiven Objekten (Klassifizierung). Mittels des Konzeptes der Klasse lassen sich solche Objekte im Programm realisieren. Eine Klasse stellt dabei den Bauplan fiir das zu beschreibende Objekt bereit und die wirkliche
Realisierung des Objektes (die Instanzbildung) findet dann im Hauptprogramm zur Laufzeit statt. Die formale Beschreibung wie das Objekt beschaffen ist, d.h. welche Merkmale (Instanzvariablen bzw: Daten-Member der Klasse) und
Verhaltensweisen (Methoden der Klasse bzw. Member-Funktionen) das zu beschreibende Objekt hat, werden innerhalb der Klasse definiert. Eine Klasse ist also eine Vorlage, eine abstrakte Idee, die ein Grundgertist von Eigenschaften und
Methoden vorgibt. Die Erzeugung eines Objektes dieser Klasse entspricht der Materialisierung dieser Idee im Programm. Bei der Erzeugung des Objektes wird der sogenannte Koustruktor der Klasse aufgerufen, und verlisst das Objekt den
Guiltigkeitsbereich seines Teilbereiches des Programms, wird es durch den sogenannten Destrurkior wieder zerstért. Das Grundgeriist emer Klasse besitzt die folgende Form, wobel im Anweisungsblock der Klasse nicht alle der aufgezihlten
Grolen definiert werden miissen.

class Klassenname { 'Anweisungsblock: Instanzvariablen (Daten-Member), Konstruktoren, Member-Funktionen, Destruktor' };

C++ Klassen: Zugriffskontrolle und die éffentlich zugiinglichen Bereichen eines Objektes

Eine weitere wichtige Klassen-Terminologie ist die Kennzeichnung von privaten und 6ffentlich zuginglichen Bereichen
des Objektes. In einer Klasse werden die Daten-Member und Member-Funktionen nach aufien gekapselt, sodass der
Benutzer der Klasse sie nicht manipulieren kann (private-Bereiche der Klasse). Kennzeichnet man einen Bereich der

Klasse jedoch als public, so kann man von auBlen auf die Daten und Methoden zugreifen und sie auch verindern. Neben
diesen beiden Klassifizierungsbegriffen gibt es zusitzlich die Kennzeichnung protected, bei der man nur von
Unterklassen heraus auf die Daten und Methoden zugreifen kann. Besitzt eine Klasse keine explizite Kennzeichnung von

o ) ) i prvaten und 6ffentlich zuginglichen Bereichen, so sind alle Merkmale der Klasse privat. Bei der Verwendung der C++

pubiizfe ntliche Konstruktoren und Member-Funktionen der Klasse Struktur 'struct’ sind hi.ngegen alle Mel‘k@ale c")_ffent]ich_ und man kann 'struct’ sanit als eine 6ffent]ic.he 'class'’ .anseher.l.
// Standard-Konstruktor und iiberladene Konstruktoren der Klasse Die nebenstehende Abbildung veranschaulicht die Schreibweise einer C++ Klasse im Quellcode, wober gewdhnlicherweise
a zunidchst die povaten und dann die als 6ffentlich gekennzeichneten Definitionen und Anweisungen folgen.

class Klassenname {
// Private Instanzvariablen (Daten-Member) der Klasse

// Member-Funktionen der Klasse Merkmale von C++ Klassen: Daten-Member und Member-Funktionen

Daten und Funktionen, die in einer Klassendefinition deklariert werden, bezeichnet man als Daten-Meniber
(Instanzvariablen) und Member-Funktionen (Klassen-interne Funktionen). Durch die Bezeichner private, protected und
public findet eine Kapselung der Klassen-internen Merkmale von den anderen Bereichen des C++ Programmes statt. Der




Objektorientiertes Programm: Die Klasse ,Players"

SpatialGame_2x2_Class.py

iome »> hanauske > neu_2025 > VPSOC_2025 » Verlesungen > 11 > SpatialGame_2x2_Class.py
1 [import networkx as nx

mport numpy as np
nport matplotlib.pyplot as plt
from random import randint, uniform, random, choice
from math import isclose
mport os
from matplotlib import rcParams

port matpletlib.gridspec as gridspec

class Players:

def __init__(self, n_nodes, initial_coop_prob=0.3):

self.data = np.zeros((n_nodes, 7))
self.n_nodes n_nodes

k =
for i in range(int(np.sgrti{n_nodes))):
for j in range(int(np.sqrt(n_nodes))):
self.datalk, @] k
self.datalk, 1] i
self.datalk, 2] ]

self.datalk, 3] 1 if uniform(o, 1) initial_coop_prob else
self.datalk, 5] self.datalk, 3]

self.datalk, 6] 1 self.datalk, 3]

k 1

def reset_payoffs(self):
self.data[:, 4] D0

def set_next_strategy(self, node_idx, strategy):
self.datalnode_1idx, 5] strategy

def apply_next_strategies(self):
self.datal:, 3] self.datal:, 5]

def get_current_strategy(self, node_idx):
return self.data[node_idx, 3]

def get_last_opponent_strategy({self, node_idx):
return self.data[node_idx, 6]

def update_last_opponent(self, node_idx, opponent_strategy):
self.datalnode_idx, 6] opponent_strategy

def mean_strategy(self):
return np.mean(self.datal:, 3])

def update_strategies(self, graph, rule):
for node im range(self.n_nodes):
neighbors list(graph.neighbers{node))
if mot neighbors:
continue

my_payoff self.data[node, 4]
my_current self.get_current_strategy(node)

self.set_next_strategy(node, my_current)

if rule :
neigh_payoffs self.data[neighbors, 4]
max_p np.max(neigh_payaffs)

68 if max_p my_payoff and mot isclese(max_p, my_bayoff]:
best_idx neighbors[np.argmax(neigh_payoffs)]
best_strategy self.get_current_strategy(best_idx)
self.set_next_strategy(node, best_strategy)

elif rule
neigh neighbors[randint{®, len(neighbors}-1)]
if self.data[neigh, 4] my_payoff and not isclose(self.data[neigh, 4], my_payoff):

self.set_next_strategy(node, self.get_current_strategy(neigh))

elif rule
last_moves [self.get_last_opponent_strategy(n) fer n in neighbers]
coop_count sum( last_moves )
new_strat 1 if coop_count len(neighbors)/2 else
self.set_next_strategyinode, new_strat)

elif rule
fermi_K
neigh neighbors[randint{@, len{neighbors)-1)}]
neigh_payoff self.data[neigh, 4]
neigh_strat self.get_current_strategyineigh)

if my_current neigh_strat: .
delta my_payoff neigh_payoff \X}
prob 1 {1 np.exp({delta fermi_K)) eltere
if random( ) prob: cc
self.set_next_strategy(node, neigh_strat) ”lllj(ifltfi -
elif rule 4 C__’_'_’/’_’-’;i Regelﬂ
mu

neigh_payoTfs self.data[neighbors, 4]

max_p np.max(neigh_payoffs)

if max_p my_payoff and not isclose(max_p, my_payoff):
best_idx neighbors[np.argmax(neigh_payoffs)]
best_strategy = self.get_current_strategy(best_idx)
self.set_next_strategy(node, best_strategy)

if random( ) mu
self.set_next_strategy(node, choice([0, 1]))

else:
ralse ValueError( . f Reg rulet”)



Vorlesung 11

Da wir im Laufe der Vorlesungsreihe nun an einem Punkt angekommen sind, bei dem die verwendeten Programme sehr umfangreich und
uniibersichtlich geworden sind, ist es sinnvoll, am Ende einige Zeit mit der Strukturierung von Computerprogrammen zu verbringen. Das Paradigma
der Objekt-orientierten Programmierung und das Konzept der Klasse wird in dieser Vorlesung behandelt. Danach befassen wir uns mit der Quanten

Spieltheorie. Zunichst wird der mathematische Formalismus eines (2 Personen)-(2 Strategien) Quantenspiels vorgestellt. Dann wenden wir den
guantenspieltheoretischen Formalismus auf dominante, Koordinations- und Anti-Koordinationsspiele an. Wir werden sehen, dass wenn die
Strategieverschrankung der Spieler nur groR genug ist, kénnen zusitzliche Nash-Gleichgewichte entstehen und zuvor vorhanden Nash-
Gleichgewichte verschwinden. Ungiinstige, Dilemma-artige Situationen und nicht vorteilhafte evolutionr stabile Strategien kiénnen sich ab
definierten Verschrankungsbarrieren auflésen.

Einfiirung in die Objekt-orientierte Programmierung

Die meisten Programmiertechniken, die wir bis jetzt kennengelernt haben, verwendeten den Programmentwurfstil der prozeduralen Programmierung
und wir benutzten meist die Programmiersprache Python bzw. verwendeten Python Jupyter Notebooks. Wir werden nun den Fokus auf die
Strukturierung von Programmen legen (das Programmierparadigma der objektorientierten Programmierung) und das Klassenkonzept kennenlernen.
Das Konzept der objektorientierten Programmierung beruht auf der alltdglichen Erfahrung, dass man Objekte nach zwei MaRstdben beurteilt: Ein
Objekt besitzt einerseits messbare Eigenschaften und ist aber auch andererseits iiber seine Verhaltensweisen definiert. Eine Klasse ist ein
benutzerdefinierter neuer Datentyp, der durch das Schliisselwaort 'class’ gekennzeichnet wird und die gesamte Idee der objektorientierten
Programmierung beruht génzlich auf diesem Konzept der Klasse. In einer Klasse werden die messbaren Eigenschaften des Objektes in
Instanzvariablen (Daten-Member) gespeichert und durch Konstruktoren werden diese Daten-Member dann initialisiert. Die Verhaltensweisen des
Objektes werden durch klasseninterne Funktionen, die sogenannten Member-Funktionen, beschrieben. In dem folgenden Link werden die Grundlagen
der Objekt-orientierten Programmierung allgemein am Beispiel von C++ Klassen vorgestellt. Eine Anwendung der Objekt-orientierten
Programmierung ist in dem Python Programm Raumliches symmetrisches (2 » 2)-Spiel mit Klassenstruktur (SpatialGame 2x2 Class.py) zu finden.

Der mathematische Formalismus eines (2 Personen)-(2 Strategien) Quantenspiels

Um die mathematische Beschreibung des quantenspieltheoretischen Modells (siehe rechtes
Panel dieser Vorlesung) zu verdeutlichen, wird im Folgenden ein (2 Personen)-(2 Strategien)
Quantenspiel betrachtet. In dem Jupyter Notebook Quanten Spielthecrie werden die
Entscheidungsoperatoren der Spieler mittels der beiden Entscheidungswinkeln &, und , (

i = A, B fiir Spieler A und B) wie folgt definiert:

¥ g elon] A g e [o,g]

Der Zwei-Spielerzustand | V) = J':T (I:",; R [}3) J |Sf 3{3} ist ein vier komponentiger

Spinor, wobei die Basisvektoren dieses vierdimensionalen komplexwertigen Hilbertraumes H
durch die vier méglichen, klassischen Strategienkombinationen (messbaren Eigenzustdnde des

Vorlesung 11

Am Anfang dieser Vorlesung gehen wir auf das Klassenkonzept der Objekt-orientierte
Programmierung ein und wenden dieses auf die Spieltheorie an (sieche Python Programm
SpatialGame 2x2 Class.py). Das Programm besteht aus zwei separaten Klassen, wobei

die Klasse Players die relevanten Eigenschaften der Spieler beschreibt und die Klasse

SpatialGameSimulation die eigentliche raumliche Simulation des Spiels darstellt.

Sowohl die deterministische evolutiondre Spieltheorie, als auch die Spieltheorie auf
komplexen Netzwerken zeigt, dass die Strategienentwicklung von Populationen sich zu
Dilemma-artige Situationen entwickeln konnen. Die einzelnen Spieler der Population
sehen sich (aufgrund der Dilemma-artigen Struktur der Auszahlungsmatrix) gezwungen
eine Strategie zu wéhlen, in der jeder einzelne Spieler und somit die gesamte Population
einen geringen Nutzen erhielt, obwohl ein vorteilhafterer Zustand moglich wiére. In dieser
Vorlesung betrachten wir die Quantenspieltheorie, die einen speziellen mathematischen
Formalismus bereitstellt, um kooperative Effekte in die Spieltheorie miteinzubeziehen.
Die Quantenspieltheorie stellt eine mathematische und konzeptuelle Erweiterung der
klassischen Spieltheorie dar. Der Raum aller denkbaren Entscheidungswege der Spieler
wird vom rein reellen, messbaren Raum in den Raum der komplexen Zahlen (reelle und
imagindre Zahlen) ausgedehnt. Durch das Konzept der méglichen quantentheoretischen
Verschrinkung der Entscheidungswege im imagindren Raum aller denkbaren
Quantenstrategien kénnen gemeinsame, durch kulturelle oder moralische Normen
entstandene Denkrichtungen in die evolutiondre Dynamik mit einbezogen werden. Ist die
Strategienverschriankung der Spieler im imagindren Raum der denkbaren
Entscheidungswege nur geniigend groB, so konnen zusétzliche Nash-Gleichgewichte
auftreten und zuvor existente dominante Strategien sich aufldsen.

Basisvekloren

I’|’|‘

s151) .
Zwei Spieler
Zustandsfunktion
1 & _
51 h‘-‘g:} |llj} -

sish) | T (Ua@Us)T |s)sh)

.
A By
53 50



EinfUhrung in die Quanten Spieltheorie

:

Complex numbers
G. W. Leibniz (1702)

“...are a subtle and wondrous refuge
of the human spirit, almost a hybrid
between being and non-being "

"...sind eine feine und wunderbare Zuflucht des
menschlichen Geistes, beinahe ein Zwitterwesen
zwischen Sein und Nichtsein”

ik 2 2y ) H"f (“>

The Quantum Wave Function
is defined on the space of complex numbers
(real numbers and imaginary numbers)

the so-called Hilbertspace
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2) Die Schrodinger-Gleichung

Wie in der Einleitung erldutert, wird in der quantenmechanischen Beschreibung ein apriorischer Zustand W des Teilchens definiert. Wie beschreibt man nun
diesen Zustand eines Quantenobjektes mathematisch? Einerseits soll die zeitliche Entwicklung dieses Zustandes keine wirkliche, reale Abfolge von
Ereignissen darstellen - eher eine Tendenz der Entwicklung. Der Zustand soll einer Wahrscheinlichkeitsbeschreibung von mefibaren Ereignissen dienen
aber paradoxerweise selbst nicht real und empirisch fassbar sein. Die mathematische Beschreibung einer solchen Zustandsfunktion benutzt neben der realen
Zahlenwelt auch die imagindren Zahlen und beschreibt den Zustand des Teilchens in einem komplexwertigen sog. Hilbertraum ¥ € H. Im Moment der
Messung kollabiert dieser Zustand zu einer beobachtbaren Eigenschaft des Teilchens und diese observable Grofle des Zustandes wird real. In diesem
Unterpunkt wird die wichtigste Gleichung der nichtrelativistischen Quantenmechanik (die sog. Schrodinger-Gleichung) vorgestellt und diversen Beispielen
erldutert. Die Schrodinger-Gleichung beschreibt wie sich die Zustandsfunktion eines Quantenobjektes W (7, t) zeitlich verindert und bestimmt zusitzlich
ihr rdumliches Verhalten unter Einwirkung einer Kraft, die durch ein Potential V (7, t) hervorgerufen wird. Sie besitzt das folgende Aussehen:

A{ G bei: B —— ALVt
i TR (r,t) wobei: =—5-A+ (7,t)

A - 2 02 52 52
H ist der sog. Hamiltonoperatorund A = V. = aa? + ;T + % der Laplace-Operator.

Unter der Annahme, dass das Potential nicht von der Zeit abhingt (V' (7,t) = V/(7)), lisst sich die Schrodinger-Gleichung mittels des Produktansatzes
U(r,t) = (r) - f(t) in die sog. stationire (zeitunabhiingige) Schrodinger-Gleichung umschreiben:

I;”/J(T") = E(r) mit: W(r,t) = §(r) efi;fi t
f(t)

wobei E die Energie des Zustandes darstellt.

Der Quantenzustand und die
Schrédinger-Gleichung

Die Quantentheorie stellt eine ganzlich
neue Formulierung der Physik dar. Bei
der mathematischen Konstruktion
dieser neuen Theorie stand man vor
dem Dilemma, dass man einerseits
daran gebunden ist, jedes physikalische
Experiment in den Begriffen der
klassischen Physik zu beschreiben,
andererseits bendtigte man neue, nicht
klassische Elemente innerhalb der
Theorie, um z.B. den Welle-Teilchen-
Dualismus oder nichtlokale
Eigenschaften von Teilchen aquivalent
zu beschreiben. Am Ende dieser

Entwicklung stand ein vollkommen
neues GerUst einer mathematischen
Beschreibung, welches z.B. mittels der
"Kopenhagener Deutung der
Quantentheorie" interpretiert und
verstanden wurde.



Quantum Measurement

and Reality

At the moment of measurement,
the complex-valued state of the quantum object
collapses into an observable property:
The observable property of the object
becomes real
The decision state of a player

collapses to one of the pure strategies
—

¢
des Elek
Quanten

= f " p(a,t) My (2, )

Quantum Entanglement

Das Einstein-Podolsky-Rosen Paradoxon

A.Einstein: ,Spooky long-distance effect"

Raum
<

Quelle

Verschrankter
zwel Teilchen
Zustand W

U = \%-.;(_T.-1 lp—1alB)

% s (Teilchen A)
) Messung|

(Teilchen B) &

(1B

Wp = Bob
LB

\Y

Alice YA = [ I:

Richard Feynman:
“I'think | can safely say that

nobody understands quantum mechanics.”

Zeit




Quantum Games

The entangled Two-Player Quantum-Spinor

basis vectors

Two-Player
Quantum State

V) =

| J (aA ®aB> i \stlﬁ




Spielbaum eines simultanen Spieler B sy
(2 Personen)-(2 Strategien)

Spiels
W . A
Definition des Spiels: S1
Menge der Spieler: Aund B SB
Menge der Strategien: 1 und 2 2
Auszahlungstabelle: SlB
2 "
<
A ¢B A B %
A ¢B A ¢B B
- Ba82)  Buda Spieler B 72




FIAS Frankfurt Institute Quantum Ga mes MesoBioNano
for Advanced Studies . . Science
Motivation

Elinor Ostrom (Nobel Prize 2009), “Collective Action and the Evolution of Social Norms”, The
Journal of Economic Perspectives, Vol. 14, No. 3 (2000), pp. 137-158

“Face-to-face communication in a public good game-as well as in other types of
social dilemmas-produces substantial increases in cooperation that are
sustained across all periods including the last period ... Thus, recent
developments in evolutionary theory and supporting empirical research
provide strong support for the assumption that modern humans have inherited
a propensity to learn social norms, similar to our inherited propensity to learn
grammatical rules. Social norms are shared understandings about actions that
are obligatory, permitted, or forbidden ..

Ernst Striingmann Forum (FIAS, May 27-June 1, 2012):

The Cultural Evolution of the Structure of Human Groups

How important are collective decision-making mechanisms compared to individual ones in the
evolution of social systems? ...

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)
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Defining Communities

Our sense of communities rests on a second hypothesis (Image 9.4): GROWTH » CONTRACTION

t+1
MERGING SPLITTING

| - - Evolving Communities
Connectedness and Density Hypothesis o : . : .
When networks evolve in time, so does the underlying community structure. All changes in community structure are the

Communities are locally dense connected subgraphs in a network. This expectation result of six elementary events in the life of a community, illustrated in the figure: a community can grow or contract;

relies on two distinct hypotheses: communities can merge or may split; new communities are born while others may disappear. After [50].




FIAS Frankfurt Institute Quantum Ga mes MesoBioNano
for Advanced Studies Science
Introduction

Die Quanten-Spieltheorie stellt eine mathematische und konzeptuelle Erweiterung der klassischen
Spieltheorie dar. Der Raum aller denkbaren Entscheidungswege der Akteure wird vom rein reellen,
messbaren Raum in den Raum der komplexen Zahlen (reelle und imaginare Zahlen) ausgedehnt. Durch das
Konzept der moglichen quantentheoretischen Verschrankung der Entscheidungswege im imaginaren Raum
aller denkbaren Quantenstrategien konnen gemeinsame, durch kulturelle oder moralische Normen
entstandene Denkrichtungen in die evolutionare Dynamik mit einbezogen werden.

) & & &
g TN ’ ‘ y -
® ®
® & @ o ® ®
Py B
@ ® ® Time -
P ¢ 5 evolution e &
%
E . x(t) S
® x(0)=0.50 x(t)=0.15

Strategies of each node (of each player): (green , black), x(t) : Fraction of player with strategy , green as a function of time t

Grey region: Group dependent collective cultural or moral standard

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)



If A betrays me it is better
if I also betray A.

Denkwege im
Gefangenendilemma

If A is silent, it is better
if I betray A

Complex space
of all possible ways of thinking

If B betrays me it is better
if I also betray B

If B is silent, it is better
if I betray B be silent betray A

C D
be silent (-1,-1) (—5,0)

betray Bl D | (0,=5) |(—4,—4)




Superpositionen von Eigenzustanden

des Gedankenexperiments.

Schrédingers Katze

Figure: Theoretische Versuchsanordnung

In einem geschlossenen Kiste
befindet sich ein instabiler
Atomkern, der innerhalb einer
bestimmten Zeitspanne mit einer
gewissen Wahrscheinlichkeit
zerfallt. Im Falle eines Zerfalls
werde Giftgas freigesetzt, was eine
im Raum befindliche Katze totet.
Bevor ein Beobachter die Kiste
offnet, schwebt der Zustand v der
Katze zwischen den
Eigenzustanden "Y1 := Lebend’
und "1y := Tot'.

!/ : (Y1 + ¥2)
V2



Superpositionen von Eigenzustanden

Schrédingers Katze

The quantum-mechanical "Schrodinger's

cat" paradox according to the Many-Worlds
interpretation. In this interpretation, every
quantum event is a branch point; the cat is
both alive and dead, even before the box is
Figure: Theoretische Versuchsanordnung opened, but the "alive” and "dead" cats are in
des Gedankenexperiments. different branches of the universe, both of

which are equally real, but which do not
interact with each other.[2]
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Quantisierte MessgroBen

Beispiel: Das Wasserstoffatom

Figure:
Aufenthaltswahrscheinlichkeit des
Elektrons im Wasserstoffatom
(n:4,|:2,m:2). Quelle: Bernd Thaller,

Visual Quantum Mechanics

Der Zustand eines Elektrons im
Wasserstoffatom wird mit Hilfe der
stationdren Schrodingergleichung
berechnet. Die messbaren Eigenzustande
des Elektrons (¢pm(r)) sind durch ihre
Quantenzahlen (n,l,m) quantisiert, d.h.
MessgroBen wie z.B. die Energie konnen
nur diskrete Werte annehmen. Der
allgemeine Elektronenzustand ergibt sich
durch Uberlagerung (Superposition) der
Eigenzustande (apm € C).

oo n—1

“_YT y: Anim Vnim

n=1 /=0 m=—1I




Das Einstein-Podolsky-Rosen Paradoxon

Verschrankter
zwel Teilchen
Zustand W

W= %(Tﬂ lg —1lalg)

$ o (Teilchen A) (Teilchen B) 4
: Messung
A '
A

Alice Wy = [ 1 Vg = ( }i

Figure: EPR Gedankenexperiment: Obwohl es keine messbare
Wechselwirkung zwischen den Teilchen A und B gibt, sind diese dennoch
mittel einer Quantenverschankung verbunden.




Die Quantenverschrankung

Verschrankte 2-Niveau-Quantensysteme

Zwei Teilchen (A,B) haben die Moglichkeit zwischen zwei Zustanden

(T, |) zu wahlen. Die Basisvektoren der jeweiligen Hilbertraume der
Teilchen seien wie folgt definiert:

Zustand des Teilchens A: vaceHs =0, Basis {Ta, la}
Zustand des Teilchens B: Vg € Hg = CQ, Basis: {15, I8}

Der Hilbertraum des zusammengesetzten Systems ist ein komplexer

vierdimensionaler Raum (H = Ha ® Hp). Der Gesamtzustand des
2-Teilchen Systems W kann unter Umstanden nicht in die jeweiligen
Einzelzustande separiert werden.

Verschrankter Zustand (z.B.): = 7 (Tale — laTs)




I11.2 Quanten Spieltheorie

Die Quantenspieltheorie stellt eine mathematische und konzeptuelle

Basisvektore 5 ; ; :
e Erweiterung der klassischen Spieltheorie dar. Der Raum aller denkbaren

|s/f> \S'i‘ s1 ) o Entscheidungswege der Spieler wird vom rein reellen, messbaren Raum in
Zwei Spieler den Raum der komplexen Zahlen (reelle und imaginére Zahlen) ausgedehnt.
Zustandsfunktion Durch das Konzept der moglichen quantentheoretischen Verschriankung der
Entscheidungswege im imagindren Raum aller denkbaren Quantenstrategien
W) = konnen gemeinsame, durch kulturelle oder moralische Normen entstandene

Denkrichtungen in die evolutiondre Dynamik mit einbezogen werden. Ist die
jT (Z/A{A QU B) j ]s‘i‘ 5’{) Strategienverschriankung der Spieler im imagindren Raum der denkbaren
Entscheidungswege nur geniigend grof3, so konnen zusitzliche Nash-
Gleichgewichte auftreten und zuvor existente dominante Strategien sich
auflosen.

Die Quanten-Spieltheorie beschreibt den Entscheidungszustand eines
Spielers u = A, B, bevor dieser die endgiiltige Wahl der reinen Strategie
getroffen hat, als eine komplexwertige Grofe (einen sog. Spinor |), bzw.
4)p) in einem zweidimensionalen Zustandsraum, dem sogenannten
Hilbertraum # 4 bzw. H p. Der Zwei-Spielerzustand | ¥) ist ein
vierkomponentiger Spinor, welcher auf dem gemeinsamen Hilbertraum der Spieler (H := H 4 ® H ) definiert ist. Formal setzt sich dieser aus den

Entscheidungsmatrizen (Entscheidungsoperatoren) U A bzw. U g und der Verschrinkungsmatrix (bzw. dem Verschrinkungsoperator) j zusammen (siehe
nebenstehenden Abbildung). Die der evolutiondren Entwicklung zugrundeliegende Replikatordynamik besitzt in der evolutiondren Quantenspieltheorie eine
komplexere Struktur und die jeweiligen evolutionir stabilen Strategien konnen sich, abhingig vom Mal} der Verschrinkung, abiandern.

—

Spielbaum eines (2 Personen)-(2 Strategien) Quantenspiels.
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Wie geht man in der Physik vor?
Wie beschreibt man in der Physik das Verhalten der

untersuchten Dinge?
Nehmen wir z.B. das Elektron als das Ding (der Aktant (Akteur, Knoten, Spieler)) des zu untersuchenden
Systems. Mit welcherTheorie beschreiben wir das Verhalten dieses Elektrons?

des Elektrons und seines zugehorigen Antiteilchens als Zustand eines Dirac- i=+/—1 : Imaginire Einheit

spinors zZusamimen:

¢ : Lichtgeschwindigkeit

: T8 h :
€L Linkshéndiges Elektron h = — : Plank’sches Wirkungsquantum
y er | . | Rechtshindiges Elektron (1.1) 2m Ruh des T .
ba = = . -
4 €r, Linkshéndiges Positron g HHEIIIIASSE (s TOHILIONS
€R Rechtshindiges Positron po: Raumzeitindex 0...3
Man kann dann mit ein und derselben Gleichung sowohl das Teilchen A,B : Diracindex 1..4
al-s auch'das Anti.tcilch%)n b()?chroibcn. Die zutreffende Gleichung nennt man 9, — 0 . Partielle Abloftung
Diracgleichung; sie besitzt die folgende Form:® Ozt
w4 : Fermionischer Diracspinor
, moc : :
i7" "0, 0B — TOwA =0 (1.2) VF‘AB . Dirac Matrizen

Vergleicht man den Zwei-Spielerzustand der Quanten Spieltheorie mit dem Diracspinor, so reprasentieren die

beiden Spieler das Teilchen und das Antiteilchen und die Handigkeit (links, rechtshandig) die Strategienwahl der Spieler.
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Teil II1.2.1 Einfithrung in die Quanten Spieltheorie

Die Annahme des vollstindig verbundenen, zufilligen Netzwerks, welches die Grundlage der deterministischen evolutioniren Spieltheorie bildet, ist in realen sozialen
Netzwerken oft nicht erfiillt. In realen sozialen Netzwerken bilden sich oft weitgehend abgeschlossene Cluster von miteinander verbundenen Spielern, die zu anderen Clustern
nur bedingt bzw. selten Kontakt haben. Diese Art von Cluster- bzw. Cliquenbildung kann zu einer unterschiedlichen Ausprigung von sozialen Normen innerhalb der
einzelnen Teilgruppen fithren. Soziale Normen konnen sich somit herausbilden, die den einzelnen Spielern neben ihrem homo ékonomischen Interesse auch den Blick auf das
Wohl der eigenen Gruppe nahelegen. Eine solche Art von induziertem Gruppeninteresse wird im folgenden mittels des Ansatzes der Quanten-Spieltheorie mathematisch in die
deterministischen Gleichungen der evolutionédren Spieltheorie eingearbeitet. Die Quantenspieltheorie stellt eine mathematische und konzeptuelle Erweiterung der klassischen
Spieltheorie dar. Der Raum aller denkbaren Entscheidungswege der Spieler wird vom rein reellen, messbaren Raum in den Raum der komplexen Zahlen (reelle und imaginire
Zahlen) ausgedehnt. Durch das Konzept der moglichen quantentheoretischen Verschrinkung der Entscheidungswege im imagindren Raum aller denkbaren Quantenstrategien
konnen gemeinsame, durch kulturelle oder moralische Normen entstandene Denkrichtungen in die evolutiondre Dynamik mit einbezogen werden. Ist die
Strategienverschrinkung der Spieler im imagindren Raum der denkbaren Entscheidungswege nur geniigend grof3, so konnen zusitzliche Nash-Gleichgewichte auftreten und
zuvor existente dominante Strategien sich auflosen.

Die erste formale Beschreibung der Quanten-Spieltheorie wurde im Jahre 1999 von Eisert et al. vorgestellt. Diese oft zitierte Arbeit betrachtet die quantentheoretische
Erweiterung eines Gefangenendilemma Spiels und zeigt auf, dass die Spieler dem Dilemma entkommen konnen, falls der strategische Verschrinkungswert oberhalb einer dem
Spiel eigenen Grenze liegt. Im selben Jahr (1999) analysierte D. A. Meyer das Penny Flip Spiel und erweiterte dieses mittels quantentheoretischer Konzepte. In seinem Artikel
betrachtete er den unrealistischen Fall, dass einer der Spieler das im Spiel benutzte Geldstiick in einem iiberlagerten Quantenzustand positionieren konne und zeigte, dass dieser
Spieler stets das Spiel gewinnen wird, falls sein Gegenspieler eine rein klassische Strategie benutzt. Im Jahre 2000 kommentierte S.J. van Enk die Arbeit von D. A. Meyer und
zeigte, dass Meyer's Behauptung nicht sonderlich beeindruckend ist, da er nur einem der Spieler einen groBeren Strategienraum erlaubt. Im Jahre 2000 wendeten Marinatto &
Weber die quantentheoretischen Konzepte auf das Kampf der Geschlechter (battle of sexes) Spiel an und zeigten, dass durch die Verschrinkung der Spielerstrategien ein
eindeutiges Gleichgewicht moglich ist. In den folgenden Jahren wurden die quantenspieltheoretischen Konzepte auf weitere Spiele ausgedehnt; so analysierte R.V. Mendes die
Quantenversion des Ultimatum Spiels, Hogg et al. betrachteten das Offentliche Gut Spiel, eine Version des Quanten Koordinationsspiels und analysierten Quanten Auktionen.
Benjamin & Hayden erweiterten im Jahre 2001 den Formalismus der Quanten-Spieltheorie auf mehr als zwei Spieler. Im Jahre 2002 benutzten Piotrowski & Sladkowsky die
quantenspieltheoretischen Konzepte um Eigenschaften im Verhalten von Mirkten zu erkldren. Im Jahre 2006 analysierten Hanauske et al. das Open Access-
Publikationsverhalten wissenschaftlicher Autoren mittels des quantentheoretischen Ansatzes. Bereits im Jahre 2001 wurde das erste Quantenspiel auf einem Quantencomputer
realisiert, wobei sich die vorhergesagten Eigenschaften bestitigten. Die Resultate dieser Experimente wurden im Jahre 2007 von A. Zeilinger erneut bestitigt. Die ersten
Ansitze einer Anwendung der Quanten-Spieltheorie auf sozio-6konomische Experimente wurden nach 2007 veroffentlicht. Neben diesen Arbeiten, entwickelte sich im
Bereich der Psychologie ein weiterer wissenschaftlicher Forschungszweig, welcher quantentheoretische Konzepte zur Erklarung von experimentellen Daten benutzt. Diese
Arbeiten zeigen, dass viele, zunéchst nicht erklirbare experimentelle Befunde im Bereich der Psychologie, sich mittels quantenlogischer Konzepte beschreiben lassen.
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Abstract

A quantum dynamic model of decision-making is presented, and it is compared with a previously established Markov model. Both the
quantum and the Markov models are formulated as random walk decision processes, but the probabilistic principles differ between the
two approaches. Quantum dynamics describe the evolution of complex valued probability amplitudes over time, whereas Markov models
describe the evolution of real valued probabilities over time. Quantum dynamics generate interference effects, which are not possible with
Markov models. An interference effect occurs when the probability of the union of two possible paths is smaller than each individual
path alone. The choice probabilities and distribution of choice response time for the quantum model are derived, and the predictions are
contrasted with the Markov model.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Quantum; Markov; Dynamics; Decision-making; Random-walk; Diffusion; Choice; Response-time
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Feature Review

Quantum cognition: a new theoretical
approach to psychology

Peter D. Bruza', Zheng Wang?, and Jerome R. Busemeyer®
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What type of probability theory best describes the way
humans make judgments under uncertainty and deci-
sions under conflict? Although rational models of cog-
nition have become prominent and have achieved much
success, they adhere to the laws of classical probability
theory despite the fact that human reasoning does not
always conform to these laws. For this reason we have
seen the recent emergence of models based on an alter-
native probabilistic framework drawn from quantum
theory. These quantum models show promise in addres-
sing cognitive phenomena that have proven recalcitrant
to modeling by means of classical probability theory.
This review compares and contrasts probabilistic mod-
els based on Bayesian or classical versus quantum prin-
ciples, and highlights the advantages and disadvantages
of each approach.
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ARTICLE INFO ABSTRACT

Article history: The broader scope of our investigations is the search for the way in which concepts and their combinations
Received 27 May 2008 carry and influence meaning and what this implies for human thought. More specifically, we examine
Received in revised form the use of the mathematical formalism of quantum mechanics as a modeling instrument and propose a
It Apnl 2009. ) . general mathematical modeling scheme for the combinations of concepts. We point out that quantum
Available online 31 May 2009 : S T e : 239 B
mechanical principles, such as superposition and interference, are at the origin of specific effects
Keywords: in cognition' related to conc_ept cpmbina;ions. such as the guppy effect and the overegtension and
Cdncept b0t underextension of membershlp weights of items. We worlf outaconcrete quantum mechamcgl moc{el for
Concept conjunction a large set of experimental data of membership weights with overextension and underextension of items
Guppy effect with respect to the conjunction and disjunction of pairs of concepts, and show that no classical model is
Overextension possible for these data. We put forward an explanation by linking the presence of quantum aspects that
Quantum mechanics model concept combinations to the basic process of concept formation. We investigate the implications of
Interference our quantum modeling scheme for the structure of human thought, and show the presence of a two-layer
Superposition structure consisting of a classical logical layer and a quantum conceptual layer. We consider connections
H'”:f” Spere between our findings and phenomena such as the disjunction effect and the conjunction fallacy in decision
Bock space theory, violations of the sure thing principle, and the Allais and Elsberg paradoxes in economics.
© 2009 Elsevier Inc. All rights reserved.
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OPEN Quantum affective processes
for multidimensional
decision-making

Johnny K. W. Ho?"" & Johan F. Hoorn1.2:3%

In modeling the human affective system and applying lessons learned to human-robot interaction,
the challenge is to handle ambiguous emotional states of an agency (whether human or artificial),
probabilistic decisions, and freedom of choice in affective and behavioral patterns. Moreover,
many cognitive processes seem to run in parallel whereas seriality is the standard in conventional
computation. Representation of contextual aspects of behavior and processes and of self-directed
neuroplasticity are still wanted and so we attempt a gquantum-computational construction of robot
affect, which theoretically should be able to account for indefinite and ambiguous states as well as
parallelism. Our Quantum Coppélia (Q-Coppélia) is a translation into quantum logics of the fuzzy-
based Silicon Coppeélia system, which simulates the progression of a robot’'s attitude towards its user.
We show the entire circuitry of the Q-Coppélia framework, aiming at contemporary descriptions of
(neuro)psychological processes. Arguably, our work provides a system for simulating and handling
affective interactions among various agencies from an understanding of the relations between
aguantum algorithms and the fundamental nature of psyvcholoagyv.
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Abstract

Quantum games, like quantum algorithms, exploit quantum entanglement to establish strong correlations between strategic
player actions. This paper introduces quantum game-theoretic models applied to trading and demonstrates their im-
plementation on an ion-trap quantum computer. The results showcase a quantum advantage, previously known only theo-
retically, realized as higher-paying market Nash equilibria. This advantage could help uncover alpha in trading strategies, defined
as excess returns compared to established benchmarks. These findings suggest that quantum computing could significantly
influence the development of financial strategies.

Quantum games: a review of the history, current state, and
interpretation

Faisal Shah Khan? Neal Solmeyer & Radhakrishnan Balu! Travis S. Humble!

October 1, 2018

Abstract

We review both theoretical and experimental developments in the area of quantum games since the
inception of the subject circa 1999. We will also offer a narrative on the controversy that surrounded the
subject in its early days, and how this controversy has affected the development of the subject.

In the context of Hawk-Dove games, we emphasize the
earlier work of Hanauske et al. (Hanauske et al., 2010),
which illustrates that the quantum-entangled version of the
hawk-dove game produces “non-aggressive” evolutionary
stable strategies that are unattainable within the classical
game-theoretic framework. The real-world context of their
model 1s investment banking and the 1ssuance of highly
risky investment products with high expected return (ag-
gressive, Hawk strategy) versus investment products of
rather low risk and moderate expected return (non-ag-
gressive, Dove strategy). Their findings also suggest that
the economic population collectively adopts a non-
aggressive quantum strategy, and they suggest potential
applications of this toward mitigation of market crashes.
The authors interpret quantum entanglement in a non-
physical sense, framing i1t as a shared psychological
contract that aligns the strategies of economic agents.
Rather than resulting from explicit contract negotiations,
they argue that this alignment emerges from broader so-
cioeconomic factors that simultancously shape individual
behavior. These factors include moral standards, values,
legal rules, shared experiences, and similar educational
backgrounds, which collectively influence decision-
making and drive individuals toward coordinated ac-
tions, even 1n the absence of direct communication.
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Abstract: In the 21st century, various socio-economic crises have revealed that traditional economic science and
(neo)classical thinking are unable to explain all the complexity of current economic problems, therefore the
application of more complex and non-trivial economic concepts is gaining relevance. In addition to behavioral
and evolutionary economic thinking, models of quantum economics have been developed in recent years, which
allow solving economic problems, using mainly quantum thinking and the principles of quantum physics, in
particular particle-wave dualism, the principle of uncertainty, the absence of a subject-object distinction,
superposition and confusion. The article addresses 3 research questions (RQ). According to RQ1, the paper finds
that guantum economics research is dominated by the following topics: quantum economics, guantum finance,
guantum decision making, and gquantum game theory. According to these four thematic descriptors, the article
carries out a systematic modern review of scientific works in the period from 1978 to 2022 (if only 50 works were

Relevance of entanglement in the economy

Entanglement is evident in most contractual relationships that underlie transactions, e.g. in the relationship
between creditors and debtors (Orrell, 2018b). The loan contract connects two parties, meaning that a change on
the side of one party instantly affects the other. Therefore, debt/credit (and other contractual) relationships create
an intricate web of entanglements, which can be mapped using techniques taken from complexity science (Orrell,
2018b). Due et al. (2005) argue that the concept of quantum entanglement can help improve the economic
efficiency of oligopolistic markets (for a duopolistic market, see Shi et al., 2021) by reducing the imperfections
of oligopolistic competition. If companies rather think in terms of relationships and strategies than in transactions,
pure production and sales quantities and prices and resulting profits, the strategies create in a game theoretical
sense an entanglement (i.e. dependency) which makes companies more thoughtful (Due et al., 2005).
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ABSTRACT KEYWORDS
Game theory has been studied extensively in recent centuries as a set of formal mathematical strategies for Nash Equilibrium,
optimal decision making. This discipline improved its efficiency with the arrival, in the 20th century, of digital Polynomial Time
computer science. However, the computational limitations related to exponential time type problems in digital Quantum Problems,
processors, triggered the search for more efficient alternatives. One of these choices is quantum computing. Quantum Computing,
Certainly, quantum processors seem to be able to solve some of these complex problems, at least in theory. For Quantum Game
this reason, in recent times, many research works have emerged related to the field of quantum game theory. In Strategies, Quantum
this paper we review the main studies about the subject, including operational requirements and implementation Game Theory.

details. In addition, we describe various quantum games, their design strategy, and the used supporting tools. We
also present the still open debate linked to the interpretation of the transformations of classical algorithms in
fundamental game theory to their quantum version, with special attention to the Nash equilibrium.
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Abstract:
Classical game theory is a powerful tool focusing on optimized resource distribution, allocation, and sharing in classical wired

and wireless networks. As quantum networks are emerging as a means of providing frue connectivity between quantum
computers, it is imperative and crucial to exploit game theory for addressing challenges such as entanglement distribution and
access, routing, topology extraction, and inference. Quantum networks provide the promising opporiunity of employing
guantum games owing to their inherent capability of generating and sharing guantum states. In addition, quantum games offer
enhanced payoffs and winning probabilities, new strategies, and equilibria, which are unimaginable in classical games.
Employing quantum game theory to solve fundamental challenges in guantum networks opens a new fundamental research
direction necessitating inter-disciplinary efforts. In this article, we introduce a novel game-the-oretical framework for exploiting
guantum strategies to solve — as an archetypal example — one of the key functionalities of a quantum network, namely,
entanglement distribution. We compare quantum strategies with classical ones by showing the quantum advantages in terms of
link fidelity improvement and latency decrease in communication. In the future, we will generalize our game framework to
optimize entanglement distribution and access over any quantum network topology. We will also explore how quantum games
can be leveraged to address other challenges like routing, optimization of quantum operations, and topology design.
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Using Quantum Game Theory to Model Competition
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Abstract —|1)
B Codes for Numerical Examples

We examine how quantum game theory could reshape strategic decision-making in economics.

. .- ) ) . L. L ) This section provides Python code for solving the quantum equilibrium
Embedding quantum principles into classical frameworks expands feasible equilibria, often

discussed in the paper. Each subsection corresponds to a specific examy

softening competition and enabling outcomes unattainable under classical strategies. We 1l-  detailing the exact implementation procedure for replication purposes.

lustrate these mechanisms in a high—low pricing game, where the performance gap between

quantum-enabled and classical players depends on the degree of entanglement, creating in-| B.1 Pricing Competition: Classical versus Quantum

centives for broader adoption when payoff asymmetries favor the quantum side. Extending .
) ) ) ) o import numpy as np

to canonical settings—such as the Prisoner’s Dilemma, Bertrand and Cournot competition,| from numpy import kron

Stackelberg leadership, Hotelling spatial competition, repeated games, auctions, and spatial fre® sc¢ipy.cptimize import minimize

preemption—quantum strategies yield efficiency gains through expanded strategy spaces and  # payoffs in the order (H,H), (H,L), (L,H), (L,L)

probabilistic interdependence. payA = np.array([4.0, 1.0, 5.0, 2.01)
payB = np.array([4.0, 5.0, 1.0, 2.0])

New Journal of Physics R
The open access journal at the forefront of physics # Entangler J_x(\ga.mma) Tor the EWl. acheme
def J_x(gamma: float) -> np.ndarray:

c, 8 = np.cos(gamma / 2.0), np.sin(gamma / 2.0)

return np.array([
PAPER - OPEN ACCESS [ e, 0.0, 0.0, 1j=*s],

[0.0, ¢, 1j*s, 0.0 ],
Analogies between phase transitions in potential EO-O, 1j*s, <, 0.0 %
ey 1j*s, 0.0, 0.0,

games and quantum phase transitions 1, dtygeicomplexy -

To cite this article: Archan Mukhopadhyay ef al 2025 New J. Phys. 27 123901 # Local unitary U {(\theta \psi \lambda)

2 s wme - - . - N



Teil II1.2.2 Mathematischer Formalismus der die Quanten Spieltheorie

Die bei der quantentheoretischen Formulierung benutzten mathematischen Ansitze konnen grob in zwei Hauptstrome gegliedert werden. Der Dichtematrix
Ansatz der Quantenspieltheorie (sieche Marinatto & Weber) und den quanten-informationstheoretischen Ansatz von Eisert et al. Der auf
quanteninformationstheoretischen Konzepten aufbauende Ansatz hat einerseits den Vorteil, dass die neu entstehenden Quantenstrategien in einem reduzierten
Quanten-Strategienraum visualisiert und interpretiert werden konnen, andererseits baut der Ansatz die Moglichkeit einer Quantenverschriankung in
mathematisch eleganter Weise in die Theorie ein, so dass man die Stirke einer moglichen Strategienverschrinkung der Spieler mittels eines zusitzlichen
Parameters (7y) im Modell variieren kann. In den ersten Jahren nach seiner Veroffentlichung wurde der Eisert'sche Ansatz von Benjamin & Hayden und S.J. van
Enk angegriffen und kritisch diskutiert. Die damals erhobenen Vorwiirfe stellten sich jedoch im Laufe der Zeit als nicht auf die Eisert'sche Theorie anwendbar
heraus. Im Folgenden wird das Konzept der Quanten-Spieltheorie (in der Eisert'schen, quanten-informationstheoretischen Nomenklatur) im Detail beschrieben.
In der Quanten-Spieltheorie kann der Entscheidungszustand der beteiligten Akteure, im Gegensatz zur klassischen Spieltheorie, eine gemeinsame
Strategienverschrinkung aufweisen. Durch das Konzept dieser moglichen quantentheoretischen Verschriankung der Entscheidungswege im imagindren Raum
aller denkbaren Quantenstrategien konnen gemeinsame, durch kulturelle oder moralische Normen entstandene Denkrichtungen, mit in die klassische Theorie
einbezogen werden. Eine der grundlegenden Folgerungen aus einer solchen gemeinsamen Strategienverschriankung ist, dass die beteiligten Akteure eine erhdhte
Kooperationsbereitschaft aufweisen, da sie dann eine Optimierung des gemeinsamen Zwei-Spielerzustandes | ¥) anstreben.

Um die mathematische Beschreibung eines evolutioniren, quantenspieltheoretischen Modells zu verdeutlichen, wird im Folgenden zunichst ein (2 Personen)-(2
Strategien) Quantenspiel betrachtet. Der spieltheoretische, bindre Entscheidungsprozess der Akteure soll durch eine allgemeine Auszahlungsmatrix bestimmt
sein (siehe nebenstehende Auszahlungstabelle). Die Quanten-Spieltheorie beschreibt den Entscheidungszustand eines Spielers u = A, B, bevor dieser die
endgiiltige Wahl der reinen Strategie getroffen hat, als eine komplexwertige Grof3e (Spinor) in einem zweidimensionalen Zustandsraum, dem sogenannten

Hilbertraum #,,. Die in dieser Arbeit verwendete mathematische Reprisentation dieses Spinors wird mit Hilfe des Entscheidungsoperators u u(Gis81)

konstruiert, der auf einen Anfangszustand (hier speziell ‘s‘ll >) wirkt. Ein allgemeiner Entscheidungszustand des Spielers A wird somit wie folgt mathematisch
konstruiert:



The Quantum State of Player A and the Decision Operator

[Ya) =Pi|si) + by |sy) = ( ﬁ;) € Ha
—Py

)= (1) 1= (2] ot =P, vt -

0

el 1 cos(g‘—;)

[Ya) = U(Ba, pa) |s2) =

—sin(%

Die reinen Zustande '3‘14> und |s‘24> bilden die Basis des Hilbertraums 7 4 des Spielers A und reprisentieren die reinen

Strategien 8‘14 und 8‘24 des Spiels. Der Entscheidungsoperator des Spielers p hingt von den beiden Entscheidungswinkeln 6,
und ¢, ab und ist explizit wie folgt definiert:

v 8, €0,7 A %e[o,%]



The Entanglement Operator and the 2-Player Quantum State

Der finale Zwei-Spielerzustand eines simultanen Zwei-Strategien-'One Shot'- Quantenspiels wird somit durch den vierkomponentigen Quantenzustand |‘P)

beschrieben, welcher sich in der Eisert'schen Reprasentation wie folgt aus dem Anfangszustand |¥y) = J |S“? s’f > entwickelt
[ eos{ L)

-~

¥)=J (04 ® 03) J St TR j|s]‘s’l’> =

Sl 7

| —isin(5) )
wobei J = (J(,/;). a, f = 1...4 die von dem Parameter y abhéngige Verschrankungsmatrix (bzw. den Verschrankungsoperator) beschreibt
( cos(%) 0 0 —isin( %))

0 cos(%)
(A/A — (U('j/).). g = 1..2un 03 — (Uf/).). a, = 1...2 stellen die von den Winkeln 64, ¢4 und g, ¢p abhangigen Entscheidungsmatrizen

(Entscheidungsoperatoren) der Spieler A und B dar.




The Quantum Version of the Payoff Function

Der Erwartungswert der Auszahlungen der Spieler wird zusitzlich durch die Spielmatrix

(siehe nebenstehende Auszahlungstabelle) mitbestimmit: A\B 8{3 82B
$4 =87, Pu1+ 87, Pia + 85, Po1 + 85 Pa
A A ¢B B
$p=$2 Piy + 87 Pio+ 85 Py + 82, Poo 51 ($117$11) ($127$21)
mit: Py = |(s2sP|W) [, k,1={1,2} g | 85 87 (6.5

Dieser Erwartungswert der Auszahlungen stellt eine Erweiterung des aus der klassischen Allgemeine Auszahlungsmatrix eines (2 Personen)-(2
Spieltheorie bekannten Konzepts der Auszahlungsfunktion in gemischten Strategien dar. S¢rategien) Spiels.
Um die Auswirkungen des quantenspieltheoretischen Konzepts auf die dem Spieler
ratsame Wahl der Entscheidung zu untersuchen, wird im Folgenden die Struktur der
quantenspieltheoretisch erweiterten gemischten Auszahlungsfunktion untersucht. Im Unterschied zur klassischen Auszahlungsfunktion (

7

$ (5 A g ), die lediglich von den gemischten Strategien des Spielers A (3 ) und des Spielers B (8 oy abhingt, hingt die quantentheoretische
Erwelterung der Auszahlungsfunktion im Allgemeinen von fiinf Parametern ab: Die vier Winkel der Entscheidungsoperatoren (04, @ 4,05

und @ p) und der Parameter 7y, welcher die Stirke der Strategienverschrankung quantifiziert.



Visualization and the Reduced Set of Quantum Strategies

Um die Auszahlungsfunktion dennoch als Flidche in einem dreidimensionalen Raum zu
visualisieren, reduziert man deren Abhingigkeiten, indem man einerseits den
Verschriankungsparameter 7y fixiert und die Menge der Quantenstrategien auf diejenigen
beschrinkt, die vom Ursprung der reinen, klassischen s1-Strategie starten. Die
Abhiingigkeiten des vierkomponentigen Zwei-Spieler Quantenzustand |¥) werden durch
die Einfiihrung zweier neuer Parameter (74 und 7g) reduziert:

() = |¥(04,04,08,08)) — |¥(T4,7B)). Die fiir jeden Spieler wiihlbaren
Entscheidungswinkel 6 und ¢ werden dadurch auf einen einzigen Parameter 7 € [—1, 1]
reduziert. Positive 7-Werte entsprechen den klassischen gemischten Strategien,
wohingegen negative 7-Werte Quantenstrategien mit @ = 0 und ¢ > 0 repriisentieren.
Der gesamte quantentheoretische Strategienraum wird dadurch in vier separate Regionen
unterteilt: in den absolut klassischen Bereich (CICl: 74, 7 > 0), den absoluten
Quantenbereich (QuQl: 74,75 < 0) und in die beiden semi-klassischen Quantenbereiche
(CIQL: 74 > 0 AT < Ound QICL: T4 < 0 A 7g > 0). Durch diese (74,75)
-Reprisentation wird die Menge der méglichen Quantenstrategien auf die folgende
Untermenge reduziert:

TA

Visualisierungsraum der quantentheoretisch
erweiterten Auszahlung $ als Funktion der reduzierten
si1-Quantenstrategien 74 des Spielers A und 75 des

Spielers B. {(rm,0) | T€[0,1]} A {(O,Tg) |7 € [-1,0[}

>y

7

klassischer Bereich C1 Quantengereich Ql

Die nebenstehende Abbildung stellt die vier Regionen des Visualisierungsraums der quantentheoretischen Auszahlungsfunktion dar. Die
absolut klassische Region (CICl, ¢ 4, ¢p = 0) befindet sich im vorderen Bereich, die Region in welchem beide Spieler eine Quantenstrategie




Quantum extension of dominant class games

B B
Classical payoff for player A A\B il =

sf | (10,10) (4,12)

Y| (x24) (5.5)

Table: Payoffmatrix of a
dominant, prisoners dilemma
like game.

This dominant, prisoners
dilemma like game has only
one pure, symmetric Nash
equilibrium (s5', s2) which is
the only ESS of the

evolutionary game.




Teil I11.2.3 Symmetrische (2x2)-Quantenspiele

Parameter- | Spiel-
sitze klasse S12 | S91 | $92 | Nash-Gleichgewichte

Set 4 Dominantes 4 2 g Ein reines Nash-
Spiel _ Gleichgewicht (s3', s5 Dominante Spiele (SetA)
Selp Koordinations- ( £ Zwei reine NEs, ein in-
spiel ternes NE (s* = é)

Das durch Parametersatz Set 4 definierte Spiel

Setc Anti- 7 c Zwei reine NEs, ein in-
1

Koordinations- ternes NE (s* = 3) gehort der Klasse der dominanten Spiele an. Das
: Nash-Gleichgewicht in reinen Strategien befindet
Parameterwerte der drei symmetrischen Beispielspiele. sich bei der Strategienkombinati on. bei welcher
beide Spieler die Strategie s9 spielen (3‘24, szB )
Die auf der rechten Seite dargestellte Abbildung stellt die quantentheoretisch erweiterte Auszahlung $ 4 des

spiel

Spielers A (untransparente Fliche) und $ 5 des Spielers B (transparente Fliche) als Funktion der reduzierten
s1-Quantenstrategien 74 des Spielers A und 7 des Spielers B dar. Als zugrundeliegender Parametersatz
wurde Set4 verwendet und die Stirke der Quantenverschriankung der Spielerstrategien wurde auf null
gesetzt (y = 0). Als Visualisierungsraum wurde der in der oberen Abbildung beschriebene reduzierte Raum
verwendet, wobei der absolute Quantenbereich QuQu, bei dem beide Spieler eine Quantenstrategie benutzen,
im hinteren Teil des Diagramms zu finden ist und die rein klassische Region CICI nach vorne projiziert
wurde. Die Abbildung zeigt deutlich, dass das unverschrinkte Quantenspiel identisch mit der klassischen
Version des Spiels ist. Im Bereich, in dem beide Spieler eine Quantenstrategie wihlen (74 < 0 A 7 < 0),
ist die Auszahlung der Spieler gleich der Auszahlung, als wenn die Spieler die klassische Strategie s1
gewiihlt hitten ($ 4 (74 = 0,73 = 0) = 10,$p(74 = 0,78 = 0) = 10). Das Nash-Gleichgewicht des
klassischen Spiels ((3‘24, sf ), die dominante Strategie) entspricht den folgenden 7-Werten:

(53, s¥)=(74 = 1,75 = 1) und bleibt auch im unverschrinkten Quantenspiel bestehen.

Die beiden Diagramme in der linken unteren Abbildung stellen die quantentheoretisch erweiterte
Auszahlungsfunktion bei einem mittleren und dem maximalen Verschriankungswert dar. Die Struktur der

" »
a A R A~ Ara o
A 1 no<fl Nen innerh D _( 0 N10 K Nen Keoilon ala 1

Symmetrische (2 Personen)-(2 Strategien) Spiele lassen sich formal in drei unterschiedliche
Spielklassen separieren (siehe Teil I).

Quantentheoretisch erweiterte Auszahlung $ 4 des
Spielers A (untransparente Fliiche) und $p des
Spielers B (transparente Fliche) als Funktion der
reduzierten s;-Quantenstrategien 74 des Spielers A
und 75 des Spielers B in einem unverschrinktem
Quantenspiel (7 = 0) unter Verwendung des
Parametersatzes Set 4.




Quantum extension of dominant class games

The diagram clearly exhibits that
the non-entangled quantum game
Payoff of player A (colored) and player B simply describes the classical
: _ version of the prisoner’s dilemma
(wired) for v = 0 (no entanglement) came, For-fhe case, Hak Bot
players decide to play a quantum
strategy (74 < 0 A 7 < 0) their
payoff is equal to the case where
both players choose the classical
pure strategy s;
($a(7a = 0,78 = 0) = 10). The
| . classical Nash equilibrium ((szA.sf),
RRARAREE e gl the dominant strategy) corresponds

e
*\5{{--\(\9 ‘\‘\““ to the following
AT T \ g “i T-values:(sf, 52B)£(TA =178 = 1J.
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The 2-Player Decision State

For the absolute classical region C/C/ the shape
of the surfaces does not change, whereas for
the partially classical-quantum (C/Qu and QuCl)
and absolute quantum region regions QuQu the
s ~ O 3 1 Payoff structure changes due to.a po§si!ale

10 - interference of quantum strategies within
Hilbertspace. The structure of Nash-equilibria
does not change for the left picture, whereas for
the following pictures the previously present
dominant strategy of the prisoner’s dilemma
game has disappeared and a new, advisable
quantum Nash-equilibrium will appear at

PN TR

(Q, @=(74 = —1, 7g = —1)). During the
transition from this figure to the next picture
two separate phenomena occur. At first, for an
entanglement value v, = 0.37, the best

response for player A to the strategy
B

Payoff of player A (colored) and player B
(wired) for v =

s, =7g = 1 is no longer the strategy
S;iTA =1, as $A(TA = -—1, TR = 1) ~ 5.05

is now higher than $4(74 = 1,75 = 1) = 5.
Secondly, for an entanglement value v, =~ 0.53,
the best response for player A to the strategy

Qp=7p = —1 is no longer the strategy
SéqﬁTA =1,as%5(ra=1,78 = —1) = 9.96

is for 45 = 0.53 lower than
$aA(tq4 = —1, 73 = —1) = 10.
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The 2-Player Decision State

For the absolute classical region CIC/ the shape
of the surfaces does not change, whereas for
the partially classical-quantum (C/Qu and Qud(l)
and absolute quantum region regions QuQu the
R O 52 payoff structure changes due to a possible

Lo R interference of quantum strategies within
Hilbertspace. The structure of Nash-equilibria
did not change for the last figure, whereas for
this and thee following pictures the previously
present dominant strategy of the prisoner’s
dilemma game has disappeared and a new,
advisable quantum Nash-equilibrium has

S S
appeared (Q, Q=(74 = —1, 71 = —1)).
During the transition from the last picture to
this figure two separate phenomena occurred.
At first, for an entanglement value v; &~ 0.37,

the best response for player A to the strategy
B

Payoff of player A (colored) and player B
(wired) for v =

s, =7g = 1 is no longer the strategy
Sé‘ﬁTA =1,as $p(74 = —1, 73 = 1) = 5.05

is now higher than $4(74 = 1, 7g = 1) = 5.
Secondly, for an entanglement value v, =~ 0.53,
the best response for player A to the strategy

Qp=7g = —1 is no longer the strategy
S;‘ﬁ‘TA =1, as $A(TA = I TB = —1) ~ 9.96
is for vo = 0.53 lower than

$a(ta = —1,73 = —1) = 10.
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Quantum Games
The 2-Player Decision State

The results show, that a quantum
extension of a classical prisoner's
dilemma game is able to change
the structure of Nash-equilibria,
and even previously present
dominant strategies could
become nonexistent, if the value
of entanglement increases further
than a defined ~-threshold.
Players with a higher strategic
entanglement value v escape the
dilemma as they see the
advantage of the quantum _
strategy combination (Qa, Qg),
which is measured as if both are
playing the classical strategy s».
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The results show, that a quantum
extension of a classical prisoner's
Payoff of player A (colored) and player B dilema game is able to ehanige
(wired) for v = 7 ~ 1.57 the structure of Nash-equilibria,
and even previously present
dominant strategies could
become nonexistent, if the value
of entanglement increases further
than a defined ~-threshold.
Players with a higher strategic
entanglement value v escape the
dilemma as they see the
advantage of the quantum _
strategy combination (Qa, @g),
which is measured as if both are
playing the classical strategy s,.
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Physik der sozio-Okonomischen Systeme mit dem Computer

(Physics of Socio-Economic Systems with the Computer)

Vorlesung gehalten an der J.W.Goethe-Universitat in Frankfurt am Main

(Wintersemester 2025/26) i
von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske Jupyter Notebook: g

Frankfurt am Main 23.01.2026 Quanten Spieltheorie .

Ditter Vorlesungsteil: Quanten Spieltheorie h h ' 4
EinfUhrung Yo N 0w &

Die Annahme des vollstandig verbundenen, zufalligen Netzwerks, welches die Grundlage der deterministischen evolutiondren Spieltheorie bildet, ist in realen
sozialen Netzwerken oft nicht erftllt. In realen sozialen Netzwerken bilden sich oft weitgehend abgeschlossene Cluster von miteinander verbundenen Spielern,
die zu anderen Clustern nur bedingt bzw. selten Kontakt haben. Diese Art von Cluster- bzw. Cliquenbildung kann zu einer unterschiedlichen Auspragung von
sozialen Normen innerhalb der einzelnen Teilgruppen fuhren. Soziale Normen kénnen sich somit herausbilden, die den einzelnen Spielern neben inrem homo
6konomischen Interesse auch den Blick auf das Wohl der eigenen Gruppe nahelegen. Eine solche Art von induziertem Gruppeninteresse wird im folgenden
mittels des Ansatzes der Quanten-Spieltheorie mathematisch in die deterministischen Gleichungen der evolutionéren Spieltheorie eingearbeitet. Die
Quantenspieltheorie stellt eine mathematische und konzeptuelle Erweiterung der klassischen Spieltheorie dar. Der Raum aller denkbaren Entscheidungswege
der Spieler wird vom rein reellen, messbaren Raum in den Raum der komplexen Zahlen (reelle und imaginare Zahlen) ausgedehnt. Durch das Konzept der
maéglichen quantentheoretischen Verschrankung der Entscheidungswege im imaginaren Raum aller denkbaren Quantenstrategien kénnen gemeinsame, durch
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P> Arrows | . .
e J Dritter Vorlesungsteil:
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E— Symmetrische (2 x 2) Quantenspiele

> Negated |

T ¥ Die Quanten Spieltheorie und der verschriankte Zwei-Spieler Zustand
| Dieses Maple-Worksheet illustriert das Konzept der Quanten-Spieltheorie an mehreren Beispielen.

\BOperators | > restart:

[> Open Face [ with(linalg):

with{LinearAlgebra):

\BFraur with(plots):
(pscript '1 with{RandomTools):

with(networks):
P> Miscellaneous | with(stats[statplots]):
with{plottools):
| with(ColorTools):
Die Quanten-Spieltheorie beschreibt den Entscheidungszustand eines Spielers, bevor dieser die endgiiltige
Zustandsraum, dem sogenannten Hilbertraum. Die in diesem Worksheet verwendete mathematische Repra:
|wirkt. Die Entscheidungsoperatoren der Spieler A und B sind wie folgt definiert:
> UA:=subs({theta=ta,phi=pa},matrix(2,2, [exp(I¥*phi)¥cos(theta/2),sin{theta/2),-sin(thet:
UB:=subs{{theta=th,phi=pb}, ,matrix(2,2, [exp(I¥phi)*cos{theta/2),sin(theta/2),-sin{theti

e ”acos(-,:
UA:= i
—sin(L
2
el cos[-}
UB:= ‘ 5}
—Slrl[L
2

:Mittels des ausseren Produktes erhalt man den gemeinsamen (4z4)-Entscheidungsoperator:
> UA_T_UB:=matrix(4,4,[




Raumliche Quantenspiele (Spatial Quantum Games)

In diesemn Unterpunkt befassen wir uns mit rdumlichen

(2 Personen)-(2 Strategien) Quantenspielen. Durch die

Festlegung der Entscheidungswinkel &, und ¢, wahlt
der Spieler seine Strategie. Neben den klassischen,

reinen Strategien g, (8, = {;'(D_, 0), blaue Strategie)

.40 1.0

.35

0B

0=
10,30

und sz (82 = [:'_f?r_. 0}, rote Strategie) kann der Spieler
nun auch die Quantenstrategie Q [@ =U(0,m/2),

griine Strategie) festlegen. Wir betrachten zunichst ein
dominantes Quantenspiel mit folgender symmetrische

- A 10 4
Auszahlungsmatrix § = , mit
12 5

1
0.25 = .
0.6G b | 0.6 -

0.20 (&

¥h

0.4 015 1 047

010

0.2 T
B | .
o $ = ($ ) . Das so konstruierte Quantenspiel

entspricht somit einem evolutioniren symmetrischen (
2 x 3) Spiel auf einem rdumlichen Gitter, wobei die

0.0

.00 0.0

dritte Strategie 23 die (Juantensirategie E? darstellt.
Mittels des Python Programms Raumliches
symmetrisches (2 = 2)-Quantenspiel
(SpatialQuantumGame.py) kiinnen Simulationen fiir
unterschiedliche Verschrankungswerte ~ berechnet
werden.
Betrachtet man die Resultate des QJuantenspiels bei
verschwindendem Verschrankungswert («y = 0), so
stimmen diese mit dem klassischen Spiel iliberein. 2
ist dabei die dominante Strategie des Spiels und der
Populationsvektor konvergiert zu x({t) — 0. Erhiht
man den Verschrankungswert {iber die erste y-Barriere
(v = 71 == 0.361), so verschwindet die urspriingliche
dominante Strategie und ab einem
Verschrankungswert der tiber der zweiten y-Barriere
liegt (75 == 0.524) entsteht die neue dominante

Quantenstrategie 83 : l’f’ Die nebenstehende
Animation zeigt die Ergebnisse des raumlichen
Quantenspiels bei dem maximalen

Verschrankungswert (v = 7,2 == 1.57). Es wurden
11025 Spieler auf einem rdumlichen Gitter angeordnet

(Moore Nachbarschaft), wobei zur Zeit ¢ = 0 die
Spieler im Mittel die folgenden Strategien wahlten
(21, T2, 22)(t = 0) = (0.65,0.3, 0.05). Im oberen
linken Panel der Animation wird die Evolution der

Population im baryzentrischen Dreiecks-

Koordinatensystem veranschaulicht (xy := @2 — x3/3 und gy := x3), das rechte obere Panel veranshaulicht den Populationsvektor x(t) der observablen klassischen

Strategien (Anteil der Personen, die nach der Messung 2, spielen) und das untere Pannel zeigt die Strategienwahl der Spieler auf dem raumlichen Gitter. Man erkennt,
dass die Population dem Dilemma des Spiels entkommen und sich in der evolutionir stabilen, vorteilhafteren Quantenstrategie stabilisieren kann.




# Python-Prog

import networkx as nx

import matplotlib.pyplot as plt

from random import randint, uniform
from math import isclose

import numpy as np

from matpletlib import rcParams

import matplotlib.gridspec as gridspec
from scipy.integrate import solve_ivp
import os

from sympy inpoft symbols, Matrix, Eg, transpose, solve, N, exp, sin, cos, I, re
import matplotlib.colors as colors

#Berechnung der Erwartungswerte der observablen Strategien s_1 und s_2 (Gleichungen von QuantumGame.ipynb)
def calc_P(s_A, s_B, gamma):
def P_11(theta_A,phi_A,theta_B,phi_B,gamma):
f = (exp(2*I#(phi_A + phi_B))*cos{gamma,/2)**2 + sin(gamma/2)**2)*(sin{gamma/2)**2 + exp(-2*I*(phi_A + phi_B))*cos(gamma,/2)+*+*2)*cos(theta_A/2)**2+*cos(theta_B/2)*+*2
return f
def P_12(theta_A,phi_A,theta_B,phi_B,gamma):
f = (-exp(I*phi_A)*sin(gamma/2)**2*sin(theta_B/2)*cos{theta_A/2) + I*exp(I*phi_B)*sin{gamma/2)*sin(theta_A/2)*cos(gamma/2)*cos(theta_B/2) - I*exp(-I*phi_B)*sin(gamma/2)*sin{theta_A/2)*cos(gamma/2)*cos(theta_B/
2) - exp(-I*phi_A)*sin(theta_B/2)*cos(gamma/2)**2*cos(theta_A/2))*(-exp(I*phi_A)*sin{theta_B/2)*cos{gamma/2)**2*cos(theta_A/2) + I*exp(I*phi_B)*sin(gamma/2)*sin(theta_A/2)*cos(gamma/2)*cos(theta_B/2) - I*expl-
I*phi_B)*sin(gamma/2)*sin{theta_A/2)*cos{gamma/2)*cos{theta_B/2) - exp(-I*phi_A)*sin({gamma,/2)**2*sin(theta_B/2)*cos(theta_A/2))
return f
def P_21(theta_A,phi_A,theta_B,phi_B,gamma):
f = (I*exp(I*phi_A)*sin{gamma/2)*sin{theta_B/2)*cos(gamma/2)*cos(theta_A/2) - exp{I*phi_B)*sin(gamma/2}**2*sin(theta_A/2)*cos(theta_B/2) - exp(-I*phi_B)*sin(theta_A/2)*cos{gamma/2}**2*cos{theta_B/2) - I*exp(-
I*phi_A)*sin{gamma/2}*sin(theta_B/2)*cos(gamma/2)*cos(theta_A/2))*({I*exp(I*phi_A)*sin({gamma,/2)*sin(theta_B/2)*cos(gamma/2)*cos{theta_A/2) - exp{I*phi_B)*sin(theta_A/2)*cos(gamma/2)**2*cos(theta_B/2) - exp(-
I*phi_B)*sin(gamma/2)**2*sinltheta_A/2)*cos(theta_B/2) - I*exp{-I*phi_A)*sin(gamma/2)*sin(theta_B/2)*cos(gamma/2)*cos(theta_A/2))
return f
def P_22(theta_A,phi_A,theta_B,phi_B,gamma):
f = (-Irexp(-I*phi_A - I*phi_B)*sin(gamma/2)*cos(gamma,/2)*cos(theta_A/2)*cos{theta_B/2) + I*exp(I*phi_A + I*phi_B)*sin(gamma/2)*cos(gamma/2)*cos(theta_A/2)*cos(theta_B/2) + sin(theta_A/2)*sin(theta_B/2))**2

return f
# Strategien: (theta, phi) fir s=0,1,2 (s_1, s_2, Q) _ _ _
5 = [{e, 0), (np.pi, @), (@, np.pi/2)] # Berechnung der Wahrscheinlichkeitsmatrizen (3x3x2x2-Array) der Erwartungswerte
theta_A, phi_A = S[s_a] def PQ(gamma):
theta_B, phi_B = s[s_B] P = np.zeros((3, 3, 2, 2))
p_11 = float({re(N(P_11(theta_A, phi_A,theta_B, phi_B,gamma)))) for 1 in range(3):
p_12 = float(re(N(P_12(theta_A, phi_A,theta_B, phi_B,gamma)))) for j in rangetB}:
p_21 = float{re(N(P_21(theta_A, phi_A,theta_B, phi_B,gamma}))}) s .
p_22 = float(re(N(P_22(theta_A, phi_A,theta_B, phi_B,gamma)))) PLL, 3] calc_P(1, j, gamma)
return P
return np.array([[p_11,p_121,[p_21,p_2211) _ _ _ _ _
# Berechnung der Auszahlungen im 2x2-Quantenspiel (3x3-Auszahlungsmatrix: s_1-Quantenstrategie als 3.5trategie)
Weiterfithrende Links def set_Dollar{gamma, a, b, c, d):
P = PQ(gamma) # Einmal alle P berechnen
D = np.zeros((3, 3))
olien der 11.Vorlesung for i in range(3):
nung der 11.Vorlesung: WS 2022/23 for j in range(3):

ches (2 x 2)-Spiel mit Klassenstruktur: SpatialGame 2x2 Class.py

po@ = P[i, j, 0, @] #

s ebook: Quanten Spieltheorie pol = P[}’ J’ 0, 1] # (D
View Maple Worksheet: Netrische (2 x 2) Quantenspiele p1@ = P[i, j, 1, 0] # DC
Download Maple Worksheg Igme[rische (2 x 2) Quantenspiele pll = P[i, j, 1, 1] # DD
Download Python Programm: Riumliches symmetrisches (2 % 2)-Quantenspiel (SpatialQuantumGame.py) D[i, jl] =a * pB® + b * pB1 + ¢ * pl® + d * pll

Clusterprojekt ConTrust der Goethe-Universitit Frankfurt return D




Raumliche Quantenspiele
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Social dilemmas can be resolved

with the entangled strategic decision paths of
quantum game theory.

For vanishing values of entanglement (y=0) quantum games are identical to classical games.

Dominant Class:
Games with a dilemma: The dilemma resolves if the value of entanglement is above a defined y-barrier.

Games without a dilemma: No further Nash-equilibria, dominant strategy remains.

Class of coordination games:
The coordination problem resolves if the value of entanglement is above a defined y-barrier.

Class of anti-coordination games:
An additional Nash-Equilibrium appears if the value of entanglement is above a defined y-barrier.

In General: If the strategy entanglement is large enough, then additional Nash equilibria can occur, previously present, not

v

“favorable dominant or evolutionary stable strategies could become nonexistent and new, favorable evolutionary stable
strategies do appear for some game classes.
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Quantum Game Theory and Financial Crises (Anti-Coordination Class)

M. Hanauske, J. Kunz, S. Bernius und W. Konig "Doves and hawks in economics revisited: An evolutionary quantum game
theory-based analysis of financial crises” (in Physica A 389 (2010) 5084 — 5102)

Classical ESS: Quantum  ESS:
Mixed Strategy Observed Pure
Nash Equilibrium Strategy (Dove,Dove)

TATR)

’ * 0
T4 TR

-0.5

B

0.5

0.5
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1 1 -

Figure 5.10.: Same description as Figure 5.7, whereas the results where calcu-

lated within a maximally entangled quantum game (v = 5) using
'V o o } &

parameter set P3.

Classical [ESS:
Mixed] Strategy
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(74 75)

Dove Plateau:
Observed Pure
Strategy (Dove,Dove)
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-6 {Quantum Strategy (Q. Q):
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05 -0.5
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Figure 5.13.: Same description as Figure 5.12, whereas the results where calcu-
lated within a maximally entangled quantum game (y = 5) using

parameter set 3.
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Das Nash-Fest in Sao Paulo (Brasilien, 2010)

SECOND BRAZILIAN WORKSHOP OF
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m GAME THEORY SOCIETY, the 1st Sao Paulo School of Advanced Sciences on Game Theory of
FAPESP - The State of S&o Paulo Research Foundation. It will be held at the University of Sao Paulo,
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Oon Mon, 9 Aug 2010 hanausked@wiwi.uni-frankfurt.de wrote:

[Hide Quoted Text]

Dear Professcocr Nash,

I hope you enjoyed the 'Nash-Fest' at Saoc Paulc and you and your family are well arrived back at home -
it was very nice meeting you again.

After ocur short conversation at the end of the 'Games 2008'-conference I wrote an article in which I
acknowledged you (see page 18). After more than one year, the article is now geing to be published in
'Physica A'; I have attached the article to this E-Mail.

Materials concerning the talk I gave at the 'Second Brazilian Workshop of the Game Theory Society' can
be found at:
http://evelution.wiwi.uni-frankfurt.de/BwcT2010/

All the best greetings from Frankfurt to you and your son John.

Sincerely Yours,
Matthias Hanauske
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Dr. phil. nat. Matthias Hanauske
Institut f£far Wirtschaftsinformatik
Goethe-Universitét Frankfurt am Main

Gruneburgplatz 1




Date: Mon, 9 Aug 2010 18:02:29 -0400 jos/10/2010 12:02:29 AM CEST]
From: John F. Nash <xkjfnj@Princeton.EDU> &

To: hanauske@wiwi.uni-frankfurt.de &
F|Subject: Re: Article in which | acknowledged you

This message was written in a character set (X-UNKNOWN) other than your own.
If it is not displayed correctly, click here to open it in a new window.

Dear Dr. Hanauske,

I know nothing, persocnally, about "Quantum Game Thecry".
For example "guantum computing" has been promising (if it could
actually be develcped to werk in a practical sense) truly fabulous accelerations of the speed of
computations.
{To me it seems very paradoxical that we would meove from
the constraint of "Heisenberg uncertainty" to a great ENHANCEMENT
of the ability of machines to find the truth through calculaticns.)
until it is materially achieved I will prcbably remain naturally
suspicicus of the possibility of "magic benefits through
quantization”.
But, notwithstanding all uncertainties {(and the Uncertainty
Principle itself!) I want to thank you sincerely for the kind
and well-toned acknowledgment that you gave in your recent public-
ation.

Yours Truly,
Jchn F. Nash, Jr.
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Second Brazilian Workshop of the Game Theory Society Games 2008 - Third World Congress of the Game Theory

Society
Ich lernte Herr Prof. John Nash im Jahre 2008 auf dem "Third World Congress of the Game Theory Society' an der
Northwestern University in der Ndhe von Chicago das erste Mal kennen (siche Bilder im oberen Bereich des rechten Kellogg School of Management at Northwestern University (near Chicago)
Panels) und unterhielt mich auch personlich mit ihm (iiber evolutiondre Spieltheorie und das Einstein-Rosen-Podolski from July 13 to July 17, 2008

Paradoxon). Im Jahre 2010 hatte ich dann das Gliick ihn und seine Familie auf einer weiteren Konferenz zu treffen. Die
beiden unteren Videos entstanden wihrend des Workshops 'Second Brazilian Workshop of the Game Theory Society',
welcher im Jahre 2010 an der Universitit Sao Paulo in Brasilien stattfand. Der Workshop wurde anldsslich des 60ten
Jubilaums des Nash-Gleichgewichtes veranstaltet und neben Prof. Nash und seiner Familie waren viele beriihmte
Spieltheoretiker anwesend. Das linke Video entstand am ersten Tag der Vorlesung als Prof. Nash das erste Mal in den
Vortragsaal kam und das rechte Video zeigt eine Fragerunde an Prof. Nash. die von Prof. Marilda Sotomayor organisiert
wurde.

Second Brazilian Workshop of the Game Theory Society

In honor of John Nash, on the occasion of the 60th anniversary of Nash
equilibrium
University of Sao Paulo, from July 29 to August 4, 2010

Im unteren Bereich des rechten Panels finden Sie Bilder. die wahrend eines Barbecue-Essens entstanden sind. Unter
folgendem Link finden Sie das gesamte Programm des Workshops.

Da ich das erste Mal in Brasilien war, schaute ich mir das Land auch ein wenig an und die folgenden Bilder wurden von mir
in Rio und dem Pantanal aufgenommen.
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