
Physik der 
sozio-ökonomischen Systeme

mit dem Computer
JOHANN WOLFGANG GOETHE UNIVERSITÄT    
23 .01 .2026

MATTHIAS HANAUSKE

FRANKFURT INSTITUTE FOR ADVANCED STUDIES
JOHANN WOLFGANG GOETHE UNIVERSITÄT

INSTITUT FÜR THEORETISCHE PHYSIK
ARBEITSGRUPPE RELATIVISTISCHE ASTROPHYSIK

D-60438 FRANKFURT AM MAIN
GERMANY

10. Vorlesung



Plan für die heutige Vorlesung

• Evolutionäre Spieltheorie auf komplexen Netzwerken

• Symmetrische (2 x 2)-Spiele auf einem räumlichen Netzwerk 

• Dominante (2 x 2)-Spiele auf einem räumlichen Gitter

• Räumliche Koordinations- und Anti-Koordinationsspiele

• Symmetrische (2 x 3)-Spiele auf einem räumlichen Netzwerk 

• Spiele auf vollständig verbundenen Netzwerken

• Spiele auf zufälligen, „kleine Welt“ und skalenfreien Netzwerken

• Einführung in die Objekt-orientierte Programmierung



Evolutionäre Spieltheorie auf 
komplexen Netzwerken

zeitliche
Entwicklung 
der
Population auf 
vorgegebener 
Netzwerkstruktur

Mögliche Strategien: (grün , schwarz), Parameter t stellt die „Zeit“ dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie „grün“ spielen.
Die roten Verbindungslinien beschreiben die möglichen Spielpartner des Spielers

x(0)=0.5 x(10)=0.75

Viele in der Realität vorkommende evolutionäre Spiele werden auf einer definierten 
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind 
hierbei nicht gleichwertig, sondern wählen als Spielpartner nur mit ihnen durch das 
Netzwerk verlinkte (verbundene) Partner aus.





In diesem Python Programm wird die Menge der Spieler 
(hier N=24) auf einem 2D-Gitter mit Moorschen 
Nachbarschaftsbedingungen angeordnet (siehe S:147 in 
M.A.Nowak, „Evolutionary Dynamics“).  In jeder Iterations-
periode spielt jeder Spieler mit seinen nächsten Nachbarn 
ein symmetrisches (2x2)-Spiel. Am Ende einer Periode 
vergleicht jeder Spieler seinen Gesamtgewinn mit seinen 
Nachbarn und bestimmt in einem „Update Rule“ seine 
Strategie in der nächsten Spielperiode.  

 Die rechte Simulation 
benutzte die folgenden 
Werte der Auszahlungs-
matrix (siehe linke Abb.): 
a=1, b=0, c=1.1 und d=0.01

Beachte!: Definition von b 
und c ist in M.A.Nowak, 
„Evolutionary Dynamics“ 
vertauscht. 

Update Rules und der Entscheidungsprozess
Spieler mit Knotennummer 8 hatte in der aktuellen Periode Strategie 
„blau“ gespielt und eine gesamte Auszahlung von $=7 erhalten. Er 
wird in der nächsten Periode „rot“ spielen (siehe kleines rotes 
Kästchen), da einer seiner nächsten Nachbarn (Knoten 12) eine 
höhere Auszahlung als er hatte und dieser die Strategie „rot“ spielte.



Betrachtetes Gefangenendilemma-ähnliches (2x2)-Spiel 



Spatial Games



Evolutionäre Spieltheorie auf komplexen Netzwerken
Das Python Programm visualisiert in vier 
unterschiedlichen „Panels“ die Evolution 
des „Spatial Games“. In Panel 1 wird die 
zeitliche Entwicklung des 
Populationsvektors x(t)  veranschaulicht. 
Panel 2 zeigt die Verteilungsfunktion der 
Knotengrade P(k) des zugrundeliegenden 
Moorschen Netzwerks. Panel 3 zeigt die 
Entwicklung der Strategieentscheidung 
der einzelnen Spielerknoten in  der 
benutzten räumlichen Anordnung. Panel 4 
veranschaulicht dagegen die Menge der 
Spieler in einem Kreis, geordnet nach ihrer 
Knotenzahl.

Neben der Auszahlungsmatrix, den 
implementierten Update Rules und der 
zugrundeliegenden Netzwerkstruktur 
hängt die zeitliche Entwicklung auch von 
den gewählten Anfangsbedingungen ab 
(hier wurde ein roter Spieler in einem 
Umfeld von blauen Spieler angeordnet).

Panel 4

Panel 1

Panel 2

Panel 3



Jupyter Notebook:

Evolutionäre räumliche Spiele

Klasse der dominanten Spiele



Jupyter Notebook:

Evolutionäre räumliche Spiele

Klasse der Koordinations- und 

Anti-Koordinationsspiele







Jupyter Notebook:

Evolutionäre Spiele auf 

unterschiedlichen komplexen 

Netzwerken



Evolutionäre Spieltheorie 
auf zufälligen Netzwerken



Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken
Koordinationsspiele



Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken
Anti-Koordinationsspiele



Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken
Dominante Spiele



Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken
Dominante Spiele



Evolutionäre Spieltheorie auf Ringgitter Netzwerken



Evolutionäre Spieltheorie auf Kleine Welt Netzwerken



Evolutionäre Spieltheorie auf skalenfreien Netzwerken



Evolutionäre Spieltheorie auf skalenfreien Netzwerken

Wir simulieren nochmals das 

gleiche Spiel, wobei wir nun mit 

einer Anfangskonfiguration 

starten, bei der lediglich der 

Spieler mit dem größten 

Knotengrad (der Hub des 

skalenfreien Netzwerkes) die rote 

Strategie wählt.
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$𝑗1 ⋅ 𝑥1 + $𝑗2 ⋅ 𝑥2 + $𝑗3 ⋅ 𝑥3 −

−

$11 ⋅ 𝑥1 ⋅ 𝑥1 + $12 ⋅ 𝑥1 ⋅ 𝑥2 + $13 ⋅ 𝑥1 ⋅ 𝑥3 +

+$21 ⋅ 𝑥2 ⋅ 𝑥1 + $22 ⋅ 𝑥2 ⋅ 𝑥2 + $23 ⋅ 𝑥2 ⋅ 𝑥3 +

+$31 ⋅ 𝑥3 ⋅ 𝑥1 + $32 ⋅ 𝑥3 ⋅ 𝑥2 + $33 ⋅ 𝑥3 ⋅ 𝑥3
𝑗 = 1,2,3

Wiederholung: Replikatordynamik
(für symmetrische (2x3)-Spiele)

Wir beschränken uns nun auf symmetrische (2x3)-Spiele , d.h. zwei Personen - 3 
Strategien Spiele (M=3). Die Differentialgleichung der Replikatordynamik 
vereinfacht sich unter dieser Annahme wie folgt:

$



𝑑𝑥1
𝑑𝑡

= 𝑥1 ⋅ $11 ⋅ 𝑥1 + $12 ⋅ 𝑥2 + $13 ⋅ 𝑥3 − ሜ$

𝑑𝑥2
𝑑𝑡

= 𝑥2 ⋅ $21 ⋅ 𝑥1 + $22 ⋅ 𝑥2 + $23 ⋅ 𝑥3 − ሜ$

𝑑𝑥3
𝑑𝑡

= 𝑥3 ⋅ $31 ⋅ 𝑥1 + $32 ⋅ 𝑥2 + $33 ⋅ 𝑥3 − ሜ$

Replikatordynamik
(für symmetrische (2x3)-Spiele)

Man erhält ein System von drei gekoppelten Differentialgleichungen:

Das System von Differentialgleichungen lässt sich bei gegebener 
Auszahlungsmatrix       und Anfangsbedingung                                       meist nur 
nummerisch (auf dem Computer) lösen. Die Lösungen bestehen dann aus den drei 
(zeitlich abhängigen) Populationsanteilen                                  .

( ) )0( , )0( , )0( 321 xxx$̂

( ) )( , )( , )( 321 txtxtx



Wir betrachten im Folgenden ein Beispiel 
eines (2x3)-Spiels mit der rechts 
angegebenen Auszahlungsstruktur:

Die rechte Abbildung zeigt die zeitliche 
Entwicklung der relativen 
Populationsanteile der gewählten 
Strategien für drei mögliche 
Anfangsbedingungen. Die einzige 
evolutionär stabile Strategie dieses 
Beispiels befindet sich beim gemischten 
Nash-Gleichgewicht 
Die einzelnen Pfeile im Dreieck 
veranschaulichen den durch die 
Spielmatrix bestimmten Strategien-
„Richtungswind“, dem die Population 
zeitlich folgen wird. 

Replikatordynamik
(für symmetrische (2x3)-Spiele, Beispiel 1)

Strategie 1 Strategie 2 Strategie 3

Strategie 1 (0, 0) (2, -1) (-1 , 2)

Strategie 2 (-1 , 2) (0 , 0) (2 , -1)

Strategie 3 (2 , -1) (-1 , 2) (0 , 0)

Reine Strategie 3

Reine Strategie 2Reine Strategie 1
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Wir betrachten im Folgenden ein Beispiel 
eines (2x3)-Spiels mit der rechts 
angegebenen Auszahlungsstruktur:

Die rechte Abbildung zeigt die zeitliche 
Entwicklung der relativen 
Populationsanteile der gewählten 
Strategien für drei mögliche 
Anfangsbedingungen. Das Spiel besitzt 
drei Nash-Gleichgewichte in reinen 
Strategien, die ebenfalls evolutionär 
stabile Strategien darstellen. Welche 
der drei ESS die Population realisiert 
hängt von dem Anfangswert der 
Populationsanteile ab. Die zeitliche 
Entwicklung folgt wieder dem 
Strategien-„Richtungswind“ der 
zugrundeliegenden 
Auszahlungsmatrix. 

Replikatordynamik
(für symmetrische (2x3)-Spiele, Beispiel 2)

Strategie 1 Strategie 2 Strategie 3

Strategie 1 (0, 0) (-3, -3) (-1 , -1)

Strategie 2 (-3 , -3) (0 , 0) (-1 , -1)

Strategie 3 (-1 , -1) (-1 , -1) (0 , 0)

Reine Strategie 3

Reine Strategie 2Reine Strategie 1



Replikatordynamik
(Klassifizierung symmetrische (2x3)-Spiele)

E. C. Zeeman, POPULATION 
DYNAMICS FROM GAME THEORY, 
In: Global Theory of Dynamical 
Systems, Springer 1980

E. C. Zeeman zeigt in seinem 
im Jahre 1980 veröffentlichten 
Artikel, dass man evolutionäre, 
symmetrische (2x3)-Spiele in 19 
Klassen einteilen kann. Die 
Abbildung rechts zeigt das 
evolutionäre Verhalten dieser 
19 Spieltypen. Die ausgefüllten 
schwarzen Punkte markieren 
die evolutionär stabilen 
Strategien der jeweiligen 
Spiele. Es gibt Spielklassen, die 
besitzen lediglich eine ESS und 
Klassen die sogar drei ESS 
besitzen.



Jupyter Notebook 
Evolutionspiel4.ipynb







räumliche Gitterstruktur zufälliges Netzwerk skalenfreies Netzwerk



Die rechte Simulation ist in guter 

Übereinstimmung mit den Vorhersagen 

der deterministischen evolutionären 

Spieltheorie. Die simulierte Populations-

entwicklung folgt relativ genau dem 

Populationswind der deterministischen 

Replikatordynamik und endet schließlich 

in dem reinen Nash-Gleichgewicht der 

oberen Ecke des baryzentrischen 

Dreiecks, bei dem die gesamte Population 

nur die grüne Strategie wählt.

Im Gegensatz dazu entwickelt sich die 

linke räumliche Simulation nach einiger 

Zeit entgegen den Vorhersagen der 

deterministischen Spieltheorie und folgt 

nicht mehr dem Populationswind der 

Replikatordynamik. Regionen, bestehend 

aus ausschließlich roten und blauen 

Strategien, dehnen sich langsam über die 

gesamte Population aus und schließlich 

endet die Population in dem dynamischen 

Zustand des gemischten Nash-

Gleichgewichtes am mittleren unteren 

Rand des baryzentrischen Dreiecks.
räumliche Gitterstruktur zufälliges Netzwerk



















Objektorientiertes Programm: Die Klasse „Players“

Weitere 

„update“-

Regeln



Die Klasse „SpatialGameSimulation“



Starten der Simulation

Öffentliche Member-

Funktion der Klasse 

„SpatialGameSimulation“

Ende der Klasse 
„SpatialGameSimulation“ 

und 
Instanzbildung der Klasse 



Rule 2:
Tit-for-Tat

Rule 1:
Zufällig 
besserer 
Nachbar
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