Physik der

s0zio-0konomischen Systeme

mit dem Computer

JOHANN WOLFGANG GOETHE UNIVERSITAT
20w (026

MATTHIAS HANAUSKE

FRANKFURT INSTITUTE FOR ADVANCED STUDIES
JOHANN WOLFGANG GOETHE UNIVERSITAT
INSTITUT FUR THEORETISCHE PHYSIK
ARBEITSGRUPPE RELATIVISTISCHE ASTROPHYSIK
D-60438 FRANKFURT AM MAIN
GERMANY

10. Vorlesung

Plan fUr die heutige Vorlesung

* Evolutionare Spieltheorie auf komplexen Netzwerken

* Symmetrische (2 x 2)-Spiele auf einem raumlichen Netzwerk
* Dominante (2 x 2)-Spiele auf einem raumlichen Gitter
* Raumliche Koordinations- und Anti-Koordinationsspiele

* Symmetrische (2 x 3)-Spiele auf einem raumlichen Netzwerk
* Spiele auf vollstandig verbundenen Netzwerken

* Spiele auf zufalligen, ,kleine Welt" und skalenfreien Netzwerken

* EinfUhrung in die Objekt-orientierte Programmierung

Evolutionare Spieltheorie auf

"~ komplexen Netzwerken

Viele in der Realitat vorkommende evolutionare Spiele werden auf einer definierten
Netzwerkstruktur (Topologie) gespielt. Die Spieler der betrachteten Population sind
hierbei nicht gleichwertig, sondern wahlen als Spielpartner nur mit ihnen durch das
Netzwerk verlinkte (verbundene) Partner aus.

[== /

zeitliche
Entwicklung

der

Population auf
vorgegebener
Netzwerkstruktur

x(0)=0.5 x(10)=0.75

Mogliche Strategien: (griin , schwarz), Parameter t stellt die ,Zeit dar.
x(t) : Anteil der Spieler, die im Zeitpunkt t die Strategie ,,griin“ spielen.
Die roten Verbindungslinien beschreiben die moglichen Spielpartner des Spielers

Vorlesung 9

Das in der vorigen Vorlesung betrachtete determunistische SIR-Model und die entsprechenden agenten-basierten
Computersumulationen stellten eine Beispielanwendung der Theorie der komplexen Netzwerke dar. In dieser und der darauf
folgenden Vorlesung werden wir die deterministische Beschreibung der evolutionire Spieltheorie (siehe Vorlesungen 3-5) in
dhnlicher Weise durch stochastische Computersimulationen darstellen, wobei wir uns 1 dieser Vorlesung aut symmetrische

(2x2)-Spiele auf einem raumlichen Gitter beschrinken. Die Verkniipfung der Theorie komplexer Netzwerke mit der
evolutioniren Spieltheorie stellt ein vielversprechendes mathematisches Modell dar, welches sowohl der mterdiszipliniren
Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschung dienen kann. In diesem Kapitel wird die
Vorgehensweise emer Mitembeziehung komplexer Netzwerktopologien in die evolutionare Spieltheorie beschreben. Die
dann auf emem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse kénnen in den meissten Fillen nur mittels
nummerischer, agenten-basierter Computersimulationen veranschaulicht werden. Nach einigen grundlegenden
Vorbemerkungen zur Evelutiondren Spieltheorie auf komplexen Netzwerken, werden wir zundchst die zeitliche Entwicklung von
raumlichen dominanten Spielen untersuchen und mit den Losungen der deterministischen evolutioniren Spieltheorie
vergleichen. Danach werden Koordinations- und Anti-Koordinationsspiele auf emnem rdumlichen Gitter simuliert und

analysiert.

Dominante raumliche Spiele

Wir betrachten zunichst em rAdumliches, leicht dominantes Spiel mut der im rechten Panel angegebenen Auszahlungsmatrix und
wihlen als Anfangskonfiguration der Strategienwahl der Spielerpopulation eine Konstellation, bet der nur ein Spieler die
dominante rote Strategie spielt und alle anderen Spieler die blaue Strategienwahl. Die Simulationen zeigen, dass V1 < ¢ < 1.2.1in
der zweiten Spielperiode em Rechteck aus 9 roten Knoten entsteht, welches aber dann schon in der dritten Spielperiode wieder
in einen einzelnen roten Zentrumsknoten tibergeht. Die linke untere Abbildung zeigt die raumliche Spielkonstellation zu
diesem Zestpunkt (¢ = 1.1), wobet die eingezeichneten §-Werte den erzielten kumulierten Auszahlungswerten der Spieler
entsprechen und die kleinen Vierecke innerhalb der groBen Vierecke die zuktinftige Strategienwahl der Spieler in der nichsten

Spielperiode angeben.

Vorlesung 9

Die Verkntiptung der Theorie der komplexen Netzwerke mit der
evolutioniren Spieltheorie wird in dieser Vorlesung an mehreren Beispielen
gezeigt. Die Entscheidungsprozesse der Spieler auf einem komplexen
Netzwerk kénnen nmuttels numerischer, agenten-basierter
Computerprogramme simuliert werden.

Wir betrachten zunichst emn evolutionires raumliches Spiel (siche Spatial
Games), wobei die Spieler einer endlich gro3en Population auf einem
raumlichen Gitter angeordnet und jeder Spieler nur mit seinen niachsten
Nachbarn spielen kann (Moore Nachbarschaff). Das zugrundeliegende
Netzwerk der Spielerknoten besitzt somit eine regulire Struktur und 1m
betrachteten 2-dimensionalen Fall spielt jeder Spieler pro Spielperiode mit
acht Spielern (Knotengrad k; = 8Vi €).

Smiegier Srmegez
aR

(1,1) (0,)

Wir beschrinken uns im
Folgenden auf
symmetrische 2x2-Spiele
und im ersten Unterpunkt
dieser Vorlesung (siche
linkes Panel) betrachten

wir im Speziellen ein

"leicht' dominantes Spiel

(c,0) (0.01,0.01)

- A

Spiel um eine Version des Gefangenendilemmas, wobei der Parameter ¢ > 1 die
Stirke der Dominanz der Strategie s9=Rof iiber die Strategie s;=Blan quantifiziert
(siehe Bestantwort-Pfeile in der nebenstehenden Auszahlungstabelle). Die
Spielerknoten spielen pro Iteration mit jedem threr Nachbarn und am Ende von

mit nebenstehender

Auszahlungsmatrix. Es
handelt sich bet diesem

jedem Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit
den Nachbarspielern thres Umfeldes (Update Rule). Ist die Auszahlung emes
Spielers hoher als der eigene Auszahlungswert, so dndert der Spieler in der
nichsten Spielperiode setne Strategie; ist sem eigener Wert der hochste, so bleibt
er auch in der nichsten Iteration bet seiner gespielten Strategie. Die
deterministische evolutionire Spieltheorie sagt fiir dominante Spiele voraus, dass
sich die zeitliche Entwicklung der Population zu einer evolutionir stabilen
Strategie entwickelt bei der alle Personen die dominante Strategie spielen (siehe

Vﬁf]PQ]T11(T f% 1TT"IH 4\ - hP; 1'511'11“(‘]191-1 .Q11;P]P1"I ;QT A;F‘Q ﬂ;a"l‘\f '7‘.'!3",11'\0’Q];;.I'I'I+‘1ﬂ' HP*‘ Fﬂ]]

/
Python
Progl’amm

jal Games

Spat

In diesem Python Programm wird die Menge der Spieler
(hier N=24) auf einem 2D-Gitter mit Moorschen
Nachbarschaftsbedingungen angeordnet (siehe S:147in
M.A.Nowak, , Evolutionary Dynamics"). In jeder Iterations-
periode spielt jeder Spieler mit seinen nachsten Nachbarn
ein symmetrisches (2x2)-Spiel. Am Ende einer Periode
vergleicht jeder Spieler seinen Gesamtgewinn mit seinen
Nachbarn und bestimmt in einem ,Update Rule" seine
Strategie in der nachsten Spielperiode.

Die rechte Simulation
benutzte die folgenden
Werte der Auszahlungs-
matrix (siehe linke Abb.):
a=1, b=0, c=1.1und d=0.01

Beachte!: Definition von b

und cist in M.A.Nowak,
~Evolutionary Dynamics"
vertauscht.

Update Rules und der Entscheidungsprozess

Spieler mit Knotennummer 8 hatte in der aktuellen Periode Strategie
.blau™ gespielt und eine gesamte Auszahlung von $=7 erhalten. Er
wird in der nachsten Periode ,rot" spielen (siehe kleines rotes
Kastchen), da einer seiner nachsten Nachbarn (Knoten 12) eine
hohere Auszahlung als er hatte und dieser die Strategie ,rot" spielte.

Betrachtetes Gefangenendilemma-ahnliches (2x2)-Spiel

Srdiegie1 Sategie2
R

(1, 1) (0, C)

(c, 0) (0.01,0.01)

- A

Evolutionare Spieltheorie auf komplexen Netzwerken

Das Python Programm visualisiert in vier

5 < a b) unterschiedlichen ,Panels" die Evolution
' ' B des ,Spatial Games". In Panel 1 wird die
Panel 1 1=1,b=0 o .
6 06 (¢=1.64,d=001 zeitliche Entwicklung des
5"04 Populationsvektors x(t) veranschaulicht.
. ' Panel 2 zeigt die Verteilungsfunktion der
: : Knotengrade P(k) des zugrundeliegenden
: - Moorschen Netzwerks. Panel 3 zeigt die

0 5 10

25 30 0 ' ' g Entwicklung der Strategieentscheidung

der einzelnen Spielerknotenin der

25 benutzten raumlichen Anordnung. Panel 4
veranschaulicht dagegen die Menge der

: Spielerin einem Kreis, geordnet nach ihrer
Knotenzahl.

Neben der Auszahlungsmatrix, den

‘ implementierten Update Rules und der
zugrundeliegenden Netzwerkstruktur

5 hangt die zeitliche Entwicklung auch von
den gewahlten Anfangsbedingungen ab

Panel 3 .) : 2

(hier wurde ein roter Spieler in einem

15 20
0 5 10 15 20 25 .
) . : Umfeld von blauen Spieler angeordnet).

Jupyter Notebook:
Physik der sozio-6konomischen Systeme mit dem Computer Evolutiondre raumliche Spiele

Klasse der dominanten Spiele

(Physics of Socio-Economic Systems with the Computer)

Vorlesung gehalten an der JW.Goethe-Universitat in Frankfurt am Main

(Wintersemester 2025/26)

von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske

Frankfurt am Main 14.01.2026 60
Dritter Vorlesungsteil: 50
Evolutionare raumliche Spiele (spatial games)
40
Beispiel: Dominante Spiele
™ 30

Einfiihrung

Die Verknipfung der Theorie komplexer Netzwerke (siehe Teil Il der Vorlesung) 20 srsprechen

Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschi iehung ka ie dann
auf einem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse ki 10 er Compu

In diesem Jupyter Notebook werden die Spieler einer endlich groBen Populatio n nachster werk
der Spielerknoten besitzt somit eine einfache regulare Struktur und im betracht 0 ern (Knotg 0 ' (2x2)-
Spiele und benutzen den Ansatz eines allgemeinen (2 Personen)-(2 Strategien) (-l] 2'0 4'0 6'0 lie Spielerk (-l] 2'0 4'0 6'0 m
Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit den Na “eigene Al itegie;

X X

ist sein eigener Wert der héchste, so bleibt er auch in der nachsten Iteration bel seiner gespielten Strategie.

Im Folgenden betrachten wir ein Beispiel, das an das 9. Kapitel des Buches Martin A. Nowak, Evolutionary Dynamics - Exploring the Equations of Life, 2006 angelehnt ist und ein Gefangenendilemma auf einem rdumlichen 2-dimensionalen Gitter
beschreibt. In Abhangigkeit der Starke der Dominanz der Strategie und der Anfangskonfiguration der Strategienwahl der Spieler sind unterschiedliche zeitlichen Entwicklungen der Population méglich. Wir nehmen im Folgenden ein dominantes,

symmetrisches 2x2-Spiel mit folgender Auszahlungsmatrix an:

. 1 0
§= (c 0.01)

Physik der sozio-6konomischen Systeme mit dem Computer

(Physics of Socio-Economic Systems with the Computer)

Vorlesung gehalten an der J.W.Goethe-Universitit in Frankfurt am Main

(Wintersemester 2025/26)

von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske
Frankfurt am Main 14.01.2026

Dritter Vorlesungsteil:

Evolutionare raumliche Spiele (spatial games)

Beispiel: Koordinations- und Anti-Koordinationsspiele

Einflihrung

Die Verknilpfung der Theorie komplexer Netzwerke (siehe Teil Il der Vorlesung) mit der evolutiondren Spieltheorie (sieh¢
Grundlagenforschung, als auch der angewandten, empirischen Netzwerkforschung dienen kann. In diesem Kapitel wird |
auf einem solchen komplexen Netzwerk ablaufenden Entscheidungsprozesse kénnen in den meisten Fallen lediglich mit

In diesem Jupyter Notebook werden die Spieler einer endlich groBen Population auf einem rdumlichen Gitter angeordng
der Spielerknoten besitzt somit eine einfache requlare Struktur und im betrachteten 2-dimensionalen Fall spielt jeder Sp
Spiele und benutzen den Ansatz eines allgemeinen (2 Personen)-(2 Strategien) Spiels mit symmetrischer Auszahlungsmg
Zeitschritt vergleichen die Spieler ihren summierten Gewinn/Verlust mit den Nachbarspielern ihres Umfeldes. Ist die Aus

ist sein eigener Wert der hachste, so bleibt er auch in der néchsten Iteration bei seiner gespielten Strategie.

Im Folgenden betrachten wir Beispiele von Koordinations- und Anti-Koordinationsspielen und vergleichen die zeitliche |
evolutionaren Spieltheorie (siehe Teil | der Vorlesung) betrachtete man eine unendlich grofie Population von Spielern, wi

Replikatordynamik konnten wir dann das zeitliche Verhalten des Populationsvektors @(t) (Anteil der Spieler, die die Stra

Wir nehmen im Folgenden ein allgemeines symmetrisches (2x2)-Spiel mit folgender Auszahlungsmatrix an:

- a b
)

x(t)

Jupyter Notebook:
Evolutionare raumliche Spiele
Klasse der Koordinations- und

Anti-Koordinationsspiele

o°
o

Weiterfithrende Links

Folien der 9. Vorlesung
Vorlesungsautzeichnung der 9.Vorlesung: 2
View Jupyter Notebook: Evolutiondre dominante rdumliche Spiele
Download Jupyter Notebook: Evolutiondre dominante raumliche Spiele
View Jupyter Notebook: Evolutiondre rdumliche Spiele: Koordinations- und Anti-Koordinationsspiele

3

Download Python Programm: Riumliches Spiel (mittleres Gi Walker-Anfangskonfiguration)

Download Python Programm: Raumliches Spiel (kleines Gitter mit Auszahlungen)

Download Python Programm: Raumliches Spiel (grofies Gitter): Version 1, Version 2

Vorlesung 10

In dieser Vorlesung wird nun die zeitliche Entwicklung der Strategienwahl der Population auf unterschiedlichen Netzwerktopologien
analysiert und mit den Lésungen der deterministischen evolutiondren Spieltheorie verglichen. Zunichst betrachten wir evolutionire
symmetrische (2 x 2) Spiele und dann, im zweiten Unterpunkt, analysieren wir symmetrische (2 x 3) Spielen auf rdumlichen
Gitterstrukturen und anderen Netzwerk-Topologien.

Evolutionire symmetrische (2 x 2) Spiele auf unterschiedlichen Netzwerk-Topologien

Im Jupyter Notebook Evolutionire Spiele auf unterschiedlichen Netzwerk-Topologien werden evolutionire, symmetrische (2 x 2) Spiele
auf unterschiedlichen Netzwerkklassen simuliert. Die evolutiondre Entwicklung der Strategienwahl der Spieler wird sowohl auf zufilligen,
'kleine Welt', skalenfreien, als auch auf vollstindig verbundene Netzwerkstrukturen simuliert und mit den Resultaten der deterministischen
evolutioniren Spieltheorie verglichen. Es zeigt sich hierbei, dass die simulierten Spiele auf vollstindig verbundene Netzwerken gut mit den

Ergebnissen der Replikatordynamik tibereinstimmen. Die unten dargestellte Animation zeigt die evolutionire Entwicklung eines leicht
dominanten Spiels (¢ = 1.66, sieche rechtes Panel der vorigen Vorlesung) auf einem skalenfreien Netzwerk. Bei den rdumlichen Spielen
entwickelte sich die Population zu einem Endzustand, bei dem alle Spieler die rote Strategie wihlten. Die zeitliche Ausbreitung der roten
Strategie auf einem skalenfreien Netzwerk hingt stark von der Anfangskonfiguration ab. In der unten dargestellten Animation wurde eine
Anfangskonfiguration gewihlt, bei der lediglich der Spieler mit dem gréften Knotengrad (der Hub des skalenfreien Netzwerks) die rote

Strategie wahlt.
1.0
0.75 1
0.8
(.50
0.6 v:2h
‘E 0.00 -
0.4 RN
N —0.25 1
0.2 — —0.50 -
—0.75 1

Man erkennt, im Gegensatz zu der zeitlichen Entwicklung im raumlichen Spiel, dass sich die rote Strategie nicht tiber die gesamte
Population ausbreiten kann.

Vorlesung 10

Die zeitliche Entwicklung der Strategienwahl einer Population mittels eines
analytischen mathematischen Modells abzubilden, ist das Bestreben der
evolutioniren Spieltheorie und die numerischen Lésungen der Replikatordynamik
stellen Vorhersagen innerhalb der Modellvorstellung dieses Modells dar. Die in der
Vortlesung besprochenen Modelleinschrinkungen des deterministischen
analytischen Modells legten dann eine stochastische Agenten-basierte Simulation
nahe und in dieser Vorlesung analysieren wir evolutionire Spiele auf
unterschiedlichen Netzwerk-Topologien und vergleichen die simulierte Entwicklung
der Population mit den Lésungen der deterministischen evolutioniren Spieltheorie.

In dieser Vorlesung werden sowohl evolutionire symmetrische (2 x 2), als auch (
2 x 3) Spiele auf unterschiedlichen Netzwerk-Topologien simuliert (siehe linkes
Panel dieser Vorlesung). Dabei zeigen die raumlichen und Netzwerk-Simulationen
oft eine qualitative Ubereinstimmung mit den Vorhersagen der deterministischen
evolutioniren Spieltheorie, wobei bei einigen Systemkonstellationen jedoch auch
Unterschiede auftreten. Die unten dargestellten Animationen stellen zwel
Simulationen symmetrischer (2 x 3) Spiele der Zeeman-Klasse 18 (siehe Vorlesung
5) dar, wobei bei der linken Abbildung eine rdumliche Gitterstruktur zugrunde liegt
und die rechte Simulation ein zufilliges Netzwerk verwenden.

7| = Vg:* + g,*

SN)2

au 02 ot 06 08 140
x

0

Jupyter Notebook:
Evolutionare Spiele auf

unterschiedlichen komplexen

NEIvAVET G

Phys - :
ysik der sozio-okonomischen Systeme mit dem C

(Physics of Socio-Economic Systems with the Comp

\Jorlesung gehalten an der J.W.Goet

(W'\ntersemester 2025/26)

pol. Matthias Hana

von Dr.phil.nat. Dr.rer

Ei nﬁlhrung erke iehe ™!
eorie kom lexer NetzW mpirische” Netzwer
Die \/erkr\la\F‘fung 5 c gy
Is au f
forsch 9 plau
Grur\d‘agen D
of eine solcher \ K
a
otebo©
o qetzten VP N elerknot®
In de be‘d ® e g = liche?
iegen .1 auf
ugry dell Wi gas SPe! etri
NoteP©
gen
s
\Wwir bes = ':e nach®
= in szah

he-Universitat in Frankfurt am Main

1.0

x(t)

1.0

0.6 1

—0.25 1

—0.50 1

—0.75 1

LR L e,
-

B
. L)
> .'O

o4

0.00 4

—0.25 1

—0.50 1

—0.75 1

Evolutionare Spieltheorie

auf zufalligen Netzwerken

b

IRIE

{l T.-I‘ L]

(.50 4 .
0.6 1
0.25 1 . s .

0.4 1 .00 1

e 4
.29 - A\ . a® .

0.50 7

HRL T T T

0.0 2.5 5.0 7.5 10.0 1.0 0.5 0.0 0.5

Die obige Abbildung stellt das letzte Bild des simulierten evolutionaren Spiels auf dem zufélligen Netzwerk dar.

Die obere Abbildung zeigt das Netzwerk bei einer festgelegten Zeititeration. Die roten Spieler sind um einen gewissen Betrag in z-Richtung verschoben, die
Nachbarn der roten Spieler um einen gewissen Betrag in Xxz-Richtung und Spieler, die ihre Strategie in der ndchsten Spielperiode verandern, sind um einen
gewissen Betrag in y-Richtung verschoben (in der oberen Abbildung tritt diese Situation aufgrund des statischen Endzustandes jedoch nicht auf). Zusatzlich
kann man in der interaktiven Grafik die Knotennummer, die aktuelle und zukiinftige Strategie, den erzielten Payoff und den maximalen Payoff der Nachbarn
erkennen, wenn man mit der Maus in die Nahe eines Knotens gelangt. Die einzelnen Eigenschaften des Knotens und seiner Nachbarn kénnen auch wie folgt
ausgegeben werden:

Evolutionare Spieltheorie auf vollstandig verbundenen Netzwerken
Koordinationsspiele

Die oberen Abbildungen zeigen die simulierten Ergebnisse fur zwei Koordinationsspiele mit unterschiedlichem gemischten Nash-Gleichgewicht (siehe graue
gepunktete Linien). Die simulierten Populationsvektoren (siehe schwarze, rote und griine Kurven) stimmen gut mit den Vorhersagen der analytischen
 evolutionaren Spieltheorie Uberein, wobei die Form der zeitlichen Entwicklung stark vom Zufall bestimmt ist.
|
|
- Das oben abgebildete evolutionare Spiel eines Koordinationsspiels auf einem vollstédndig verbundenen Netzwerk, in dem jeder Spieler pro Spielperiode acht

Spielpartner sucht und mit ihnen das Spiel spielt (< k > ¢~ 8) wird nun durch ein Anti-Koordinationsspiel ersetzt.

Evolutionare Spieltheorie auf vollstandig verbundenen Netzwerken
Anti-Koordinationsspiele

Evolutionare Spieltheorie auf vollstandig verbundenen Netzwerken
Dominante Spiele

Evolutionare Spieltheorie auf vollstandig verbundenen Netzwerken
Dominante Spiele

Bei den raumlichen dominanten Spielen hatten wir gesehen, dass sich die dominante Strategie nur ab einer gewissen Starke der Dominanz durchsetzen kann.
Dies wollen wir nun auf unserem Netzwerk untersuchen und setzen dafiir die Auszahlungswerte der beiden dominanten Spiele wie folgt an:

c=1.1 0.01 c=13 0.01
Spiele (kleine c-Werte) die zeitliche Entwicklung verlangsamt, simulieren wir das Spiel nicht nur 11, sondern 35 lterationen:

- 1 0 - 1 0
Linke Abbildung: $ = () , Rechte Abbildung: $§ = () . Da sich aufgrund der schwachen Dominanz der

Man erkennt im Gegensatz zu den Ergebnissen der raumlichen Spiele, dass sich auch bei geringer Dominanz des Spiels (links ¢ = 1.1, rechts ¢ = 1.3) die
zweite Strategie sich durchsetzt, wie es von der Replikatordynamik vorhergesagt wird.

Evolutionare Spieltheorie auf Ringgitter Netzwerken

0.00 4 o

x(t)

(' I . .. O. o0 \.
D= : b) ’. :
—0.2518 € %t %
. o . o R
: " XV AR
0.2 4 —(.50 1 ..o.b..:‘.:. ° ..o'. %
- ‘ot ..0....
"~ 3 -~
—0.75 1 had

('.(l Ll]] L]]
0 10 20 30 —0.5 0.0 0.5 1.0

Man erkennt, dass sich die rote Strategie im Laufe der Zeit immer mehr auf dem Ringgitter durchsetzt, die zeitliche Ausbreitung jedoch sehr langsam ist. Wir
betrachten uns nun die zeitliche Entwicklung auf einem "kleine Welt"-Netzwerk und erzeugen nach der Vorgehensweise von Watts und Strogatz 50 zufallige
Spielerverbindungen:

’I v

Evolutionare Spieltheorie auf Kleine Welt Netzwerken

—1.0 —0.5

Bei dieser Simulation auf einem kleine Welt Netzwerk kann sich die rote Strategie nicht durchsetzen und der Endzustand der Population besteht lediglich aus
I einigen roten Gruppen-Clustern.
7

Evolutionare Spieltheorie auf skalenfreien Netzwerken

(.00 4 =

—0.25 1

1.0 4 —0.75 1

0 2 | 6 S —0.5 0.0 0.5 1.0

Evolutionare Spieltheorie auf skalenfreien Netzwerken

Wir simulieren nochmals das
gleiche Spiel, wobei wir nun mit
einer Anfangskonfiguration
starten, bei der lediglich der

. Spieler mit dem grof3ten

. 0 Knotengrad (der Hub des

g skalenfreien Netzwerkes) die rote
Strategie wahlt.

0.25 1

RIS

—{).25 4

T T 1) T I)] T
{ 2 | G S — 1.0 —0.5 (.0 0.5 1.0

' Die Simulation zeigt, dass sich nun die rote Strategie im Netzwerk ausbreiten kann, jedoch auch im Endzustand gewisse Spielergruppen existieren, die die
" blaue Strategie praferieren.

/Niederholuﬂg%ReijkatordynamiI«/

(fir symmetrische (2x3)-Spiele)

Wir beschranken uns nun auf symmetrische (2x3)-Spiele , d.h. zwei Personen - 3
Strategien Spiele (M=3). Die Differentialgleichung der Replikatordynamik
vereinfacht sich unter dieser Annahme wie folgt:

b s :
de(t)
I =5 D S w® =) D S x®) - x(t)
k=1 1=1 k=1 _
$j1'x1+$j2'x2+$j3°x3 _
ﬁ:x” $11 %1 x1 + 810 x1 - xp + 893 %7 - x3 +
dt J == +$21°x2'xl+$22'Xz‘X2+$23'x2'X3+
| \+831 X3 X + 835 X3 x5, + 833 x3-x3 /|
12 Y |

$

/Repllkato rdynamik—— =

(fir symmetrische (2x3)-Spiele)

Man erhalt ein System von drei gekoppelten Differentialgleichungen:

dx -
d—tl=x1-[$11-x1+$12-x2+$13-x3—$]
dx .
d_t2=x2‘[$21'x1+$22‘x2+$23'x3_$]
dx -
d—t3=x3-[$31-x1+$32-x2+$33-x3—$]

Das System von Differentialgleichungen lasst sich bei gegebener
Auszahlungsmatrix § und Anfangsbedingung (x1 (0),x,(0), x, (0)) meist nur
nummerisch (auf dem Computer) 16sen. Die Losungen bestehen dann aus den drei
(zeitlich abhingigen) Populationsanteilen (x,(¢), x,(z), x,(¢)) -

/Re pl I kato rd_y_lﬁ-m—l—I% Strategie 1 (O, O) (2’ _1) (_1 ’ 2)
(fir symmetrische (2x3)-Spiele, Beispiel 1)

. . S waeger (a,2) (0,0) (2,7)
Wir betrachten im Folgenden ein Beispiel

eines (2x3)-Spiels mit der rechts Strategie 3 (2, -1) (41, 2) (0, 0)
angegebenen Auszahlungsstruktur: ’) ,

Die rechte Abbildung zeigt die zeitliche 1 N 2ur
Entwicklung der relativen : | Reine Strategie 3 | /g alisieru ng
Populationsanteile der gewahlten - N d
s 0 v e 0.84 t=0. - ~, er

Strategien f1.1r drei mogh.che. . ; L NN Gemischtes | gyolutiondren
Anfangsbedmgu.ngen. Die einzige : 7 _:‘-\:s-\\ ng}CIh e | Entwicklung
eV(.)luFlonéir s.tablle Strategie dieses 0.6 ; N\ and Esgs benutzt man of
Beispiels I.Jefmdeft sich beim gemils$hlten 2 : ; }/;» :'\ \:&% die sogen.
N:.—lsh.—Glelchgewmht (5’5’5] 04 P 7 g vy barycentric
Die einzelnen Pfeile im Dreieck o Iy A TR SR
veranschaulichen den durch die : RIS/ 2 T

: - : o i TN Ny L X
Sp-lelmatrlx b-estimmten. Strategler} 0.2- I AN S 1 1 yi=x, + 3
,2Richtungswind®, dem die Population AR RS s _ l s 2 2
zeitlich folgen wird. /TS e -

Zi= X

/? 0.2 0.4 0.6 0.8 /n
y
Reine Strategie 1 Reine Strategie 2

- Replikatordy

(fir symmetrische (2x3)-Spiele, Beispiel 2)

Wir betrachten im Folgenden ein Beispiel

eines (2x3)-Spiels mit der rechts
angegebenen Auszahlungsstruktur:

Die rechte Abbildung zeigt die zeitliche
Entwicklung der relativen
Populationsanteile der gewahlten
Strategien fuir drei mogliche
Anfangsbedingungen. Das Spiel besitzt
drei Nash-Gleichgewichte in reinen
Strategien, die ebenfalls evolutionar
stabile Strategien darstellen. Welche
der drei ESS die Population realisiert
hangt von dem Anfangswert der
Populationsanteile ab. Die zeitliche
Entwicklung folgt wieder dem
Strategien-,Richtungswind® der
zugrundeliegenden
Auszahlungsmatrix.

0.8-
0.6-
0.4-

0.2-

Strategie 1 Strategie 2 Strategie 3 /

Strategie 1 (O, O) (-3, —3) (-1 ’ ‘1)
Strategie 2 (_3 , _3) (O . O) (‘1 ’ '1)
Strategie 3 (_1 , _1) (—1) —1) (0 ’ 0)
I\ Reine Strategie 3
IrITI
t=0. FT
FT1T71A4
TTTT1T1
TT1T1717
LRI X
AR IR IR IR A
NI IR IR Y Vs
AN IR e

ARE LN \‘TIIII PV
— A RN
P AL U S -
o oo, P, A fc)",—*,ma-au
H_:_:_ba-n.,% NN A M,a-a.=:_:__’

t_—ﬁ.a-:.::hh-.%-a-"“-- S

T'-"'*—b-..._)

1 ,‘.—¢—=-¢=—a—c=—d-=-1--ﬁ-.*\ /‘..-—-*..-dr.:-p_¢_p_.=5.=.4...__*

0 0.2 0.4 0.6 0.8 1
y /

Reine Strategie 1

Reine Strategie 2

/Repllkatordvn—amﬂ%m

(Klassifizierung symmetrische (2x3)-Spiele) In: Global Theory of Dynamical
Systems, Springer 1980

021 1 0 1 EIEi-i
P 2 " -1 02 101 -1 0 3 305
E. C. Zeeman zeigt in seinem “" ““i%i& 1 & na;ééh

im Jahre 1980 verotffentlichten
Artikel, dass man evolutionare,

symmetrische (2x3)-Spiele in 19 (33 z (10 E (333)
Klassen einteilen kann. Die

Abbildung rechts zeigt das

evolutionare Verhalten dieser

19 Spieltypen. Die ausgefiillten (2:) (323) (123)
schwarzen Punkte markieren

die evolutionar stabilen
Strategien der jeweiligen

0-1-1Y% -1 J. O=1= 1 0=-1- 1
Spiele. Es gibt Spielklassen, die 57 (s & - i;ﬂ iy ﬁ
besitzen lediglich eine ESS und

Klassen die sogar drei ESS

besitzen. (o 1- 1 ; 0 1 s ; omsm 1
=3 0 1 1 0=1 =3 =1
=11 ﬂ =3-1 CI =1=1 ﬂl

I —
Physik der s0Z)0-Okonomiscnen Systeme poit dem Computer
ms with the Computer) —y i it;
- EJUPYFer Notebook
volutionspiels.ipynb

(Physics of Socio-Economic Syste

J.W.Goethe—Universit'at in Frankfurt am Main

Vorlesung gehalten an der

(Wintersemester 2025/26)

von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske

Frankfurtam Main 22.08.2025

er Vorlesungsteil:
3)-Spie\e

Erst
Die 19 Klassen der evolutionaren symmemschen (2 X

ginfilhrung

Evolutionire symmetrische (2 x 3) Spiele auf unterschiedlichen Netzwerk-Topologien

In den Python Programmen SpatialGame_2x3.py und NetworkGame_2x3.py werden evolutionire, symmetrische (2 x 3) Spiele auf
raumlichen Gitterstrukturen und anderen Netzwerk-Topologien simuliert. Da die determuinistische Replikatordynamik symmetrischer (2 x 3)
Spiele bereits 19 unterschiedliche Spielklassen erlaubt (siehe Vorlesung 5), gibt es, mittels der stochastischen Simulationen, eme grofie Zahl
von moéglichen zeitlichen Entwicklungen der Population. Die unten dargestellten Animationen stellen dreir Simulationen der Zeeman-Klasse
1 dar, wobe1 ber der linken Abbildung eme rdumliche Gitterstruktur zugrunde liegt, die mittlere Animation em zufilliges Netzwerk und die
rechte Simulation ein skalenfreies Netzwerk verwenden.

Sowohl bei den raumlichen als auch bei den
Netzwerk-Simulationen zeigt sich oft eine qualitative Ubereinstimmung mit den Vorhersagen der deterministischen evolutioniren
Spieltheorie.

)

Ix° T+ Gy°

]
'

)

|

!

|

-

IR

Weiterfithrende Links

Folien der 10.Vorlesung
Vorlesungsaufzeichnung der 10.Vorlesung: WS 2022/23 bzw. WS 2
dlichen Netzwe

0 20 10 60 SO 100

- raumliche Gitterstruktur

1.0 VoS 0.40
']/ 0.35
0.8 =,
—~ -0.30
\ F0.25
0.6 / %
- » F0.20
0.4 / \\ \
¢ / = \ F0.15
y /)))))
— /) N\ 0.10
0.2 N — Eiag - - [K
= . y
"/ 4 . / Ry 0.05
0.0 0.00
0.0 0.2 0.4 0.6 0.8 1.0
X
100
80
60
10
20
]
]
|

zufalliges Netzwerk

0.40

0.35

‘»H_JEH

-0.20

I 0.15

0.10

0.05

0.00

0.8

0.6

0.4

0.40

0.35

-0.30

H0.25

F0.20

015 ||
0.10

0.05

0.00

1.0

0.8

0.6

04

0.05

.0
0. 0.00

0.0 0.2 04 0.6 0.8 1o

100

80

60

10

20

0 iy . : 100
ey TAUM IO e Gttt S U K U

Die rechte Simulation ist in guter
Ubereinstimmung mit den Vorhersagen
der deterministischen evolutioniren
Spieltheorie. Die simulierte Populations-
entwicklung folgt relativ genau dem
Populationswind der deterministischen
Replikatordynamik und endet schlieB3lich
in dem reinen Nash-Gleichgewicht der
oberen Ecke des baryzentrischen
Dreiecks, bei dem die gesamte Population
nur die griine Strategie wahlt.

Im Gegensatz dazu entwickelt sich die
linke raumliche Simulation nach einiger
Zeit entgegen den Vorhersagen der
deterministischen Spieltheorie und folgt
nicht mehr dem Populationswind der
Replikatordynamik. Regionen, bestehend
aus ausschlieBlich roten und blauen
Strategien, dehnen sich langsam tber die
gesamte Population aus und schlieB8lich
endet die Population in dem dynamischen
Zustand des gemischten Nash-
Gleichgewichtes am mittleren unteren
Rand des baryzentrischen Dreiecks.

1.0

0.8

0.6

0.4

0.2

0.05

0.0

0.00

0.0 0.2 0.4 1.0

S RET I 1 \;’ T .
’5 v,g r‘-'. 3

.. ..0“;{,...~..

def create_grid(width, height):
63 g - nx.Graph()|
nkn = width = height
ol S for i in range(width): _

i for j in range(height): ’ ch l el e nEng o
e i i 4 Eeightg j def find_nash_equilibria(D):

g.add_node(k) equilibria []
for i in range(width): # B ~h i el lash-
for j in range(height): for i in range(D.shape[0]):
center = 1 * height + j for j in range(D.shape[8]):
neighbors = [_ _ _ if D[i, j] == max(D[:, j1):
({(i-1) % width) = height + (j-1) % height, # if D[], il max(D[:, i]):

(i % width) * height + {(j-1) % height,
((i+1) % width) = height + (j-1) % height,
((i+1) % width) = height + (j % height),

s': (i+1,j+1)})

equilibria.append({'type': 'pure’,

((1+1) % width) * height + (j+1) % height, # Loes_GN = []
{i % width) * height + (j+1) = height, ®1,%x2,x3,y1,y2,y3 = symbols({'x_1,x 2,x 3,y 1,y 2,y _3')
({(i-1) % width) * height {j+1) % height, # X5 Matrixi{[=1,x2,x3])
' {({i-1) % width) * height + (j % height) # ys = Matrix([y1l,y2,y3])
1 _ _ Dollar_A = transpose(xs)*D*ys
for ?Elgh_i“ neighbors: B Dollar_As = Dollar_A.subs(x3,1-x1-x2).subs(y3,1-y1-y2)[0]
if neigh center: le selbst-tdges Dollar_As_1 = Dollar_A.subs(x1,0).subs(x3,1-x2).subs{y3,1-y1-y2)[0]

g-add_edge(center, neigh) Dollar_As_2 = Dollar_A.subs(x2,0).subs(x3,1-x1).subs(y3,1-y1-y2)[0]

Dollar_As_3 = Dollar_A.subs(x3,0).subs{x2,1-x1).subs{y3,1-y1-y2)[0]
GemNash_Eql = Eqi{Dollar_As.diffi(x1),0)

GemNash_Eq2 = Eq{Dollar_As.diff(x2),0)

GemNash_Eq_1 = Eq{Dollar_As_1.diff(x2),0)

GemMNash_Eqg_2 Eqi{Dollar_As_2.diff(x1),0)

GemNash_Eq_3 = Eq{Dollar_As_3.diff(x1),0)

Bed=Eq(1,yl+y2+y3)
Loes_GN.append(solve([GemNash_Eql,GemNash_Eq2,Bed]))

Bed_a=Eq(0,y1)

Bed_b=Eq(1,y2+y3)

3 % 2 o » 106 return g
e —

SpatialGame_2x3.py
home * hanauske * neu_2025 » WVPSOC_2025 * Vorlesungen *> 11 SpatialGame_2x3.py

——

nport networkx as nx
nport matplotlib.pyplot as plt

from random import randint, uniform Loes_GN.append(solve([GemNash_Eq_1,Bed_a,Bed_b]})
from math import isclose Bed_a=Eq(0,y2)
import numpy as np Bed_b=Eq(1,yl+y3)
from matplotlib import rcParams Loes_GN.append(solve([GemNash_Eq_2,Bed_a,Bed_b]})
import matplotlib.gridspec as gridspec Bed_a=Eq(0,y3)
from scipy.integrate import solve_ivp Bed_b=Eq(1,yl+y2)
import os Loes_GN.append(solve([GemNash_Eq_3,Bed_a,Bed_b]))
from sympy import symbols, Matrix, Eq, transpose, solve for 1 in Loes_GN:
15 import matplotlib.colors as culur5| if 1 and 0 1[y1] 1 and 0 1[y2] 1 and 1[y3] 1:
equilibria.append({ ' type': 'mixed', 's*': {1[y1],1[y2]1,1[y31}})
1 rentris - return equilibria
def xylwvx):

return [vx[1]+wx[2]/2,vx[2]1]

def initialize_playersiwidth, height, x_init):
= : B nkn = width = height
def update_strategy(p, g, rule): p = np.zeros((nkn, 6)) # 1

nkn = len(p) k
for k in range(nkn): for U in range(width):
. . , for j im rangel(height):
neighbors = list(g.neighbors(k)) plk, 0] - k
if not neighbors: plk, 11 = 1
continue plk, 21 =]
! N " zufall uniform(o, 1)
if rule if z:Eill:]){_Lﬂ'_Lt[.-]:.
neigh_payoffs = p[neighbors, 4] eUif zufall = (x_init[@]+x_init[1]):
max_payoff = np.max({neigh_payoffs) plk, 3] = 2 #->Strat ;
if max_payoff plk, 4] and mnot isclose(max_payoff, p[k, 4]): else: _
best_idx = np.argmax(neigh_payoffs) p[kpg§1:;[k_=i_ e -
plk, 5] = p[neighbors[best_idx], 3] Kk 4o 1 T
- 1: Imtt return p
elif rule 1:
j = randint(®, len({neighbors) - 1) ;e}comLmé_ﬁ otfel D):
neigh_payoff plneighbors[j], 4] 'fl:urpu1 ;pi.ﬁ g.edgés{p;: .
if neigh_payoff = p[k, 4] and not isclose(neigh_payoff, p[k, 4]): plu, 41 += D[int(p[u,3]),int(p[v,31)]
plk, 5] plneighbors[j], 3] plv, 4] Dlint(p[v,3]),int{plu,3]1)]
else:
raise ValueError{f"Unglltige Regel rule}. Verwende @ oder 1.")

def apply_updates(p):
nkn = len(p)
mean_payoff = np.mean{p[:, 4]}
mean_strat_3 [np.count_nonzero(p[:,3] 0)/nkn, np.count_nonzero{p[:,3] 1)/nkn, np.count_nonzero(p[:,3] 2)/nkn]
pl:, 4] l
pl:, 31 = p[:, 5]

return xy(mean_strat_3), mean_payoff

def g_xy(xy,D):

m ;
® np.array{[1-xy[0]-xy[1]1/2,xy[0]-xy[1]/2,xy[1]]1)
dx_dt []

for i in range(m):
dx_dt.append{sum{D[1i,j]*=x[1]1*x[j] for j in range(m)) - sum{sum(D[k,j]*=x[k]1*x[j] for j in range(m)) for k im range(m))*x[i]}
return [dx_dt[1]+dx_dt[2]/2,dx_dt[2]]

def run_simulation{width=105, he1ght 105, nLt 15, rule=1, D = np.array([[®,-1,-1]7,[1,0,-3],[-1,-3,0]]), x_init=[0.25,0.5,0.25], output_dir="./pics"): -
os.makedirs{output_dir, exist_ok=True) o o o

def analytlcal solutlon(D t span x_init, num_points=500):

create_grid{width, height)

w H
1 4

p = initialize_players(width, height, x_init) def BGESﬁ;(;Saﬁiay(x)

av_strat_x = [xy{x_}n}t}[?]] Dx = D @ X

av_strat_y = [xy(x_init)[1]] u = np.dot(x, Dx)

av_dollar = [] return x * (Dx - u)

Analytische Ldsung ! t_eval = np.linspace(t_span[@], t_span[1], num_points)

t_span = [0, nit] sol = solve_ivp(DGLsys, t_span, x_init, t_eval=t_eval, rtol=10**(-13), atol=10**(-13))
t_ana, x_ana = analytical_solution(D, t_span, x_init) return sol.t, sol.y

Plot-Setup o 5”;154‘;9 o 2L LS 2o

def plot_simulation(ax1, ax2, av_strat, p, width, height):

rcParams.update({ nkn = len(p)

'figure.figsize': [8,14],

, o sgross = np.sqrt(282240C nkn) # Groesse de pieler Kaestche

text.usetex': True, col = ['r' if s == 0 else 'b' if s == 1 else 'g' for s in p[:, 3]]

'legend.fontsize': 12 col_new = ['r' if s == 0 else 'b' if s == 1 else 'g' for s in p[:, 5]]
B | alpha = [1 if p[k, 3] == pl[k, 5] else 0.5 for k in range(nkn)]

plt.figure(o)
gs = gridspec.GridSpec(2, 1, height_ratios=[1, 1.5], hspace=0.2) #Mittelwert des Populationsvektors
axl = plt.subplot(gs[o]) axl.plot(av_strat[0], av_strat[1],c="black",linewidth=2)

ax2 = plt.subplot(gs[1])

Fuye die Darstellunag des :.:.-_::'_'_ ilendiaagra A '.-.:._=;-:_'_:'_'_ X F')OS y pOS & p[’ ‘] P[) -]

Y, X = np.mgrid[0:1:100j, 0:1:100j]

gxyY = 9- xy{[x Y] D}

Die Farbe Geschwindigkeit der fe derung des Populationsvektors anze 4g4 ax2.set_xlim(-0.5, width - 0.5)

colorspeed = “P sqrt{gXY[] + gXY[1]%+2) ax2.set_ylim(-0.5, height - ©.5)
ax2.set_aspect('equal’', adjustable='box"')

ax2 scatter(x _pos, y pos, s=sgross, c=col, marker="s", edgecolor;‘none')

axl.set_xlabel{r"$\rm x%")

axl.set_ylabel({r"$\rm y$")

figure = axl.streamplot(X, Y, gX¥[0], gx¥[1], linewidth=1,density=[2, 2],norm=colors.Normalize(vmin=0.,vmax=0.4), color=colorspeed, cmap=plt.cm.jet)
axi.fill({[o,0.5,0], [0,1,1], facecolor='black')

ax1.fill([1,9.5,1], [®,1,1], facecolor='black')

axil.filu([e,1,1,8], [0,0,-0.82,-0.02], facecolor='black')

axi.fill([eo,1,1,0], [1,1,1.02,1.02], facecolor='black")
axl.scatter(xy(x_init)[0],xy(x_init)[1], s=50, marker-'u', c="black"}
axl.plotixy(x ana[u-_]}[]' oyl ana[l “]}[1] c="' g|ey ,Linewidth=1)

Erzeu yenst nden Farblegende

cbar= plt colurbar(flgure llnes a5pect-_L, ax= axl)

cbar.set_labell(r'$\left| ‘wec{v} “wright| =\sqrt{{g_x}"2 + ~2}% ' ,51ize=20)
axl.set_xlim(0, 1)

axl.set_ylim(-0.02, 1.02)

equilibria
print("Nash-Gleichgewichte:")

for

for

plt.
print{"Mittelwerte der Auszahlungen: ", [round(x, 3} for x in av_dollar])}
print{"Simulation abgeschlessen.

find_nash_equilibria(D}

eq in equilibria:
if eqg['type’] 'pure’:
print(f"Reines: Spieler 1 Strategie {eg["s"][@]}, Spieler 2 Strategie {eg["s"][1]1}"]}
if eq["s"][0] 1 and eq["s"][1] 1: 2x3)- 19 Z
axl.scatter(®,0, s=150, marker="h', c="red") . Cymdsm £yeyd
if eg["s"][0] 2 and eq["s"][1] 2: -
axl.scatter(1,0, s=150, marker="h', c="red") . .
if eq["s"][0] 3 and eq["s"][1]
axl.scatter(0.5,1, s=150, marker='h', c="red")
else: 7
print(f"Gemischtes: s*={eq["s*") -

A

axl.scatter{xyleq["s="]1)[0],xyleq["s*"]1)1[1], s=100, marker="'"", c="red")

it in range(i, nit}:

print(f"Iteration {1t} ----------------"" o e mb b b b b s o s s P —————)
compute_ payoFfS{g, p, D)

update_strategy(p, g, rule)

plot_simulation{axl, ax2, [av_strat_x,av_strat_y], p, width, height])
mean_strat, mean_dollar = apply_updatesip)

av_strat_x.append(mean_strat[0])

av_strat_y.append{mean_strat[1])

av_dollar.append(mean_dollar) D11,D12,D13,D21,D22,D23,031,D32,033 = 0,2,-1,-1,0,2,2,-1,0
set_D = np. array([[Dil D12, D13] [D21,D22,D23], [D31 D32,D3311)
DF run_simulation({ 185, 185, 80, 1, set_ D, [0.15,0.6,0.25],"./plcs_1")
filename f*img-{" " format{it)
plt.savefigl(os.path.join{output_dir, f"{filename}.png"), dpi=100, bbox_inches="tight", pad_inches=0.05)

ax2.clear()
closel)
")

Plots in", output_dir, "gespeichert.

def create_random_graph({nkn, prob):
g = nx.erdos_renyi_graph(nkn, prob)
1 0] 0
while 1 nkmn:
if g.degree(1) @:
Kn randint(@, nkn-1)

if Kn != 1: ! o
g.add_edge(i,Kn)) — o
L +=1
else:
1 1
return g

def create_network({net, nkn):

if net "random" :
g create_random_graph({nkn, 2Z*nkn/nkn**2}
elif net "scale_free":
g = nx.barabasi_albert_graph{nkn, 1)
elif net "small_world":
g = nx.watts_strogatz_graph{nkn, 4, 0.01)
else:
raise ValueError{f"Ungultiges Netzwerk: {rule}. Verwende random, scale_free oder small
if net "scale_free" and nkn 1008 :
pos = nx.kamada_kawai_layout(g)
elif net "small_world" and nkn 1000 :
pos = nx.circular_layouti(g)
else:
pos_random = nx.random_layout(g)
pos = nx.spring_layout{g, pos=pos_random, k=0.04, iterations=5)

return g, pos

def plot_simulation({axl, ax2, av_strat, p, g, pos):
nkn = len(p)
Sgross 15
col ['r* if s 1 else 'b* if s 1 else 'g' for s im p[:, 3]1]
col_new ['r if s I else 'b' if s 1 else 'g' for s in p[:, 5]]
alpha [1 if p[k, 3] plk, 5] else 0.5 for k in range(nkn)]

axl.plot{av_strat[0], av_strat[1],c="black",linewidth=2)

nx.draw_networkx_nodes(g, pos, node_size=sgross, node_color=col, edgecolors="none")
nx.draw_networkx_edges(g, pos, alpha=0.3, width=0.4, edge_color="grey")
ax2.axis{"off")

run_simulation(net="small_world", nkn=500, nit=80, rule=1, D = np.array([[®,2,-1],[-1,0,2],[2,-1,0]1]), x_init=[0.15,0.6,0.25], output_dir="./pics"):
os.makedirs{output_dir, exist_ok=True)

g, pos create_network(net, nkn)

p = initialize_players(nkn, x_init)
av_strat_x [xy(x_init)[0]]
av_strat_y = [xy(x_init)[1]]
av_dollar [1

D11,D12,D13,D21,D22,D23,D031,D32,D33 y,2,-1,-1,0,2,2,-1,C
set D np. array([[Dll D1z2,D13], [DEl D22,023],[D31,D32,D33]])
run_simulation("”random”, 106686, 120, 1, set_D, [0.15,0.6,0.25],"./pilcs_1_random”)

Einfiihrung in die Programmierung fiir Studierende der Physik

Einfiirung in die Objekt-orientierte Programmierung -
S Vorlesung:

Die meisten Programmiertechniken, die wir bis jetzt kennengelernt haben,
verwendeten den Programmentwurfstil der prozeduralen Programmierung
und wir benutzten meist die Programmiersprache Python bzw. verwendeten
Python Jupyter Notebooks. Wir werden nun einerseits den Fokus immer
mehr auf die Strukturierung von Programmen legen (das
Programmierparadigma der objektorientierten Programmierung) und dies)
zunichst am Beispiel des in C++ integrierten Klassenkonzept beschreiben.
Das Konzept der objektorientierten Programmierung beruht auf der
alltaglichen Erfahrung, dass man Objekte nach zwei Maf3stdben beurteilt:

Ein Objekt besitzt einerseits messbare Eigenschaften und ist aber auch
andererseits liber seine Verhaltensweisen definiert. Eine C++ Klasse ist ein + +
benutzerdefinierter neuer Datentyp, der durch das Schliisselwort 'class'

gekennzeichnet wird und die gesamte Idee der objektorientierten
Programmierung beruht ginzlich auf diesem Konzept der K/asse. In einer
C++ Klasse werden die messbaren Eigenschaften des Objektes in
Instanzvariablen (Daten-Member) gespeichert und durch Konstruktoren
werden diese Daten-Member dann initialisiert. Die Verhaltensweisen des
Objektes werden durch klasseninterne Funktionen, die sogenannten
Member-Funktionen beschrieben. In dem folgenden Link werden die
Grundlagen der Objekt-orientierten Programmierung und C++ Klassen
allgemein vorgestellt und die dort besprochenen Konzepte werden in den
ndchsten Vorlesungen benutzt, um das Verhalten der Spieler auf einem
komplexen Netzwerk in Objekt-orientierter Weise in den C++ und Python
Programmen zu implementieren. Nichster Zoom Link am 14.07.2022, 14:00-16:00 Ubx: ID: 794 847 5614, PWD: 785453

Thustration: Deborah Moldawski

Die Vorlesung Esnfiibrung in dee Py wng fiir Studserende der Physik stellt ein Pilichtmodul im Bachelor Studium Physik der Goethe-Universitit Frankfurt dar. Be regelmiliger
und erfolgreicher Teilnahme an den Ubungen/Praktika erhalten Sie eine Zulassung zur Klausur. Den benoteten Schein und sechs Creditpoints erhilt man schlieBlich bes
bestandener Klausur. Falls Sie bereits in einem vergangenen Semester (nach der alten Studienordnung) die Zulassung zur Klausur erhalten haben, kénnen Sie direkt an der
abschhielenden Klausur teilnehmen. Jedoch rate ich Thnen, die Vorlesung und die Ubungen,/Praktka trotzdem nochmals zu belegen, da sich die Inhalte und Schwerpunkte zu den

vergangenen Vorlesungen unterscheiden kénnten.

T e ot

Objekt-orientierte Programmierung und C++ Klassen

Einfiihrung

Die C++ Typen, die wir bisher kennengelernt hatten (z.B. int i, double a, int v[3], double A[4][5]), die sogenannten inregrierien Typen, werden wir nun mittels eines _Abstraktionsmechanismus erweitern, um eigene, benutzerdefinierte Typen zu
erstellen. Ein benutzerdefinierter Typ, wie z.B. die C++ Struktur 'struct’ oder die C++ Klasse 'class', ist ein Abstraktionskonzept, das den Quelltext eines C+ Programms tibersichtlicher macht, indem es das Programm in voneinander separierbare
Teilbereiche aufteilt. Grolle Programme bestehen oft aus einzelnen Teilaufgaben, die man mittels einer sinnvollen Klassenstruktur voneinander trennen und ordnen kann. Eine C++ Kiasse ist emn benutzerdefinierter neuer Datentyp, der durch
das Schliisselwort 'class' gekennzeichnet wird und die gesamte Idee der objektorientierten Programmierung beruht ginzlich auf diesem Konzept der Kiasse.

Benutzerdefinierte Typen und Abstraktionsmechanismen in C++

Das Konzept der objekiorientierten Programmiernng beruht auf der alltiglichen Erfahrung, dass man Objekte nach zwei Malstiben beurteilt: Ein Objekt besitzt einerseits messbare Eigenschaften (z.B. Farbe, Gewicht, _..) und ist aber auch
andererseits iiber seine Verhaltensweisen (z.B. zeitliches Verhalten, Interaktionsverhalten, Bewegungsverhalten, ...) definiert. Eine Klasse ist ein abstrakter Oberbegriff fiir die Beschreibung der gemeinsamen Struktur und des gemeinsamen
Verhaltens von realen/fiktiven Objekten (Klassifizierung). Mittels des Konzeptes der Klasse lassen sich solche Objekte im Programm realisieren. Eine Klasse stellt dabei den Bauplan fiir das zu beschreibende Objekt bereit und die wirkliche
Realisierung des Objektes (die Instanzbildung) findet dann im Hauptprogramm zur Laufzeit statt. Die formale Beschreibung wie das Objekt beschaffen ist, d.h. welche Merkmale (Instanzvariablen bzw: Daten-Member der Klasse) und
Verhaltensweisen (Methoden der Klasse bzw. Member-Funktionen) das zu beschreibende Objekt hat, werden innerhalb der Klasse definiert. Eine Klasse ist also eine Vorlage, eine abstrakte Idee, die ein Grundgertist von Eigenschaften und
Methoden vorgibt. Die Erzeugung eines Objektes dieser Klasse entspricht der Materialisierung dieser Idee im Programm. Bei der Erzeugung des Objektes wird der sogenannte Koustruktor der Klasse aufgerufen, und verlisst das Objekt den
Guiltigkeitsbereich seines Teilbereiches des Programms, wird es durch den sogenannten Destrurkior wieder zerstért. Das Grundgeriist emer Klasse besitzt die folgende Form, wobel im Anweisungsblock der Klasse nicht alle der aufgezihlten
Grolen definiert werden miissen.

class Klassenname { 'Anweisungsblock: Instanzvariablen (Daten-Member), Konstruktoren, Member-Funktionen, Destruktor' };

C++ Klassen: Zugriffskontrolle und die éffentlich zugiinglichen Bereichen eines Objektes

Eine weitere wichtige Klassen-Terminologie ist die Kennzeichnung von privaten und 6ffentlich zuginglichen Bereichen
des Objektes. In einer Klasse werden die Daten-Member und Member-Funktionen nach aufien gekapselt, sodass der
Benutzer der Klasse sie nicht manipulieren kann (private-Bereiche der Klasse). Kennzeichnet man einen Bereich der

Klasse jedoch als public, so kann man von auBlen auf die Daten und Methoden zugreifen und sie auch verindern. Neben
diesen beiden Klassifizierungsbegriffen gibt es zusitzlich die Kennzeichnung protected, bei der man nur von
Unterklassen heraus auf die Daten und Methoden zugreifen kann. Besitzt eine Klasse keine explizite Kennzeichnung von

o)) i prvaten und 6ffentlich zuginglichen Bereichen, so sind alle Merkmale der Klasse privat. Bei der Verwendung der C++

pubiizfe ntliche Konstruktoren und Member-Funktionen der Klasse Struktur 'struct’ sind hi.ngegen alle Mel‘k@ale c")_ffent]ich_ und man kann 'struct’ sanit als eine 6ffent]ic.he 'class'’ .anseher.l.
// Standard-Konstruktor und iiberladene Konstruktoren der Klasse Die nebenstehende Abbildung veranschaulicht die Schreibweise einer C++ Klasse im Quellcode, wober gewdhnlicherweise
a zunidchst die povaten und dann die als 6ffentlich gekennzeichneten Definitionen und Anweisungen folgen.

class Klassenname {
// Private Instanzvariablen (Daten-Member) der Klasse

// Member-Funktionen der Klasse Merkmale von C++ Klassen: Daten-Member und Member-Funktionen

Daten und Funktionen, die in einer Klassendefinition deklariert werden, bezeichnet man als Daten-Meniber
(Instanzvariablen) und Member-Funktionen (Klassen-interne Funktionen). Durch die Bezeichner private, protected und
public findet eine Kapselung der Klassen-internen Merkmale von den anderen Bereichen des C++ Programmes statt. Der

Objektorientiertes Programm: Die Klasse ,Players"

SpatialGame_2x2_Class.py

iome »> hanauske > neu_2025 > VPSOC_2025 » Verlesungen > 11 > SpatialGame_2x2_Class.py
1 [import networkx as nx

mport numpy as np
nport matplotlib.pyplot as plt
from random import randint, uniform, random, choice
from math import isclose
mport os
from matplotlib import rcParams

port matpletlib.gridspec as gridspec

class Players:

def __init__(self, n_nodes, initial_coop_prob=0.3):

self.data = np.zeros((n_nodes, 7))
self.n_nodes n_nodes

k =
for i in range(int(np.sgrti{n_nodes))):
for j in range(int(np.sqrt(n_nodes))):
self.datalk, @] k
self.datalk, 1] i
self.datalk, 2]]

self.datalk, 3] 1 if uniform(o, 1) initial_coop_prob else
self.datalk, 5] self.datalk, 3]

self.datalk, 6] 1 self.datalk, 3]

k 1

def reset_payoffs(self):
self.data[:, 4] D0

def set_next_strategy(self, node_idx, strategy):
self.datalnode_1idx, 5] strategy

def apply_next_strategies(self):
self.datal:, 3] self.datal:, 5]

def get_current_strategy(self, node_idx):
return self.data[node_idx, 3]

def get_last_opponent_strategy({self, node_idx):
return self.data[node_idx, 6]

def update_last_opponent(self, node_idx, opponent_strategy):
self.datalnode_idx, 6] opponent_strategy

def mean_strategy(self):
return np.mean(self.datal:, 3])

def update_strategies(self, graph, rule):
for node im range(self.n_nodes):
neighbors list(graph.neighbers{node))
if mot neighbors:
continue

my_payoff self.data[node, 4]
my_current self.get_current_strategy(node)

self.set_next_strategy(node, my_current)

if rule :
neigh_payoffs self.data[neighbors, 4]
max_p np.max(neigh_payaffs)

68 if max_p my_payoff and mot isclese(max_p, my_bayoff]:
best_idx neighbors[np.argmax(neigh_payoffs)]
best_strategy self.get_current_strategy(best_idx)
self.set_next_strategy(node, best_strategy)

elif rule
neigh neighbors[randint{®, len(neighbors}-1)]
if self.data[neigh, 4] my_payoff and not isclose(self.data[neigh, 4], my_payoff):

self.set_next_strategy(node, self.get_current_strategy(neigh))

elif rule
last_moves [self.get_last_opponent_strategy(n) fer n in neighbers]
coop_count sum(last_moves)
new_strat 1 if coop_count len(neighbors)/2 else
self.set_next_strategyinode, new_strat)

elif rule
fermi_K
neigh neighbors[randint{@, len{neighbors)-1)}]
neigh_payoff self.data[neigh, 4]
neigh_strat self.get_current_strategyineigh)

if my_current neigh_strat: .
delta my_payoff neigh_payoff \X}
prob 1 {1 np.exp({delta fermi_K)) eltere
if random() prob: cc
self.set_next_strategy(node, neigh_strat) ”lllj(ifltfi -
elif rule 4 C__’_'_’/’_’-’;i Regelﬂ
mu

neigh_payoTfs self.data[neighbors, 4]

max_p np.max(neigh_payoffs)

if max_p my_payoff and not isclose(max_p, my_payoff):
best_idx neighbors[np.argmax(neigh_payoffs)]
best_strategy = self.get_current_strategy(best_idx)
self.set_next_strategy(node, best_strategy)

if random() mu
self.set_next_strategy(node, choice([0, 1]))

else:
ralse ValueError(. f Reg rulet”)

Die Klasse ,,SpatialGameSimulation"

def payoff(self, s_a, s_b):

class SpatialGameSimulation:

N return (self.a s_a s b
def __init__(self, width=105, height=105, nit=30, rule=1, SEIt'b 5_a (1-s_b)
payoff_params=(3,4,1,5), initial_coop=0.3, output_dir="./output"): SEIt'C (1-s_a) s_b
self.width = width self.d (1-s_a) {1-s_b))

self.height = height
self.nit nit
self.rule = rule def compute_all_payoffs(self):

self.a, self.b, self.c, self.d payoff_params
self.players.reset_payoffs
123 self.output_dir output_diﬂ pray -Pay)

for u, v in self.graph.edges():
su = self.players.get_current_strategy(u)

self.graph = self._create_spatial_grid() # E i sv = self.players.get_current_strategy(v)
self.players = Players{width * height, initial_coop) I

os.makedirs{output_dir, exist_ok=True)

pu = self.payoff(su, sv)
sel

self.av_strat_history = [self.players.mean_strategy()] pv Lf.payoff(sv, su)

self.av_payoff_history []

self.players.datalu, 4] pu

self._setup_plot() .
P-F self.players.data[v, 4] pv

def _create_spatial_grid(self): if self.rule 2: TfT
g = nx.Graph() _ self.players.update_last_opponent(u, sv)
n = self.width * self.height self.players.update_last_opponent(v, su)

for 1 in range(self.width):
for j in range(self.height): .
k= 1i* self.height + j def update_strategies(self):
g.add_node(k) F F
self.players.update_strategies(self.graph, self.rule)
neighbors [
({i-1)%self.width, (j-1)%self.height),

({1)eself.width, (j-1)%self.height), def _setup_plotiself):
((i+1)sself.width, (j-1)%self.height}, - -

((1+1)%self.width, (])uself.height) rcParams.update({'figure.figsize': [7.5, 10], 'text.usetex': True})
((i+1)%self.width, (j+1)uself.height), self.fig = plt.figure() S _
({1)=self.width, (j+1)sself.height), gs = gridspec.Gridspec(2, 1, height_ratios=[1, 3.0], hspace=0.1)
((i-1)sself.width, (j+1)%self.height},
({i-1)%self.width, (j)%self.height), self.axl = plt.subplot{gs[0])

1 self.ax2 = plt.subploti{gs[1])

for ni, nj in neighbors:
neigh_id = ni * self.height « nj self.ax1l.set _x1lim{®, self.nit-1)

if neigh_1id k:

g.add_edge(k, neigh_id) self.axl.set_ylim{0, 1)

self.axl.set_ylabel({r'$x(t)%")

return g

def plot_current_state(self, iteration):
p self.players.data

sgross = np.sqrt(28224 self.players.n_nodes) Ende der Klasse
colors ['red' if s else 'blue' for s in p[:, 3]1]
alpha [1 if curr next_s else

for curr, next s n siptpls, 1, oL, 511 ,SpatialGameSimulation"

self.axl.plot{range(len(self.av_strat_history)), self.av_strat_history, 'k-') (j
self.ax2.scatter(p[:,1], pl[:,2], s=sgross, c=colors, marker="s" LJ r]
alpha=alpha, edgecolor="none')}

self.ax2.set_xlim{-0.5, self.width-0.5)
self.ax2.set_ylim(-0.5, self.height-0.5)
self.ax2.set_aspect('equal’)

Instanzbildung der Klasse

dE‘F |'ur‘|I: SE-..f :I . — OffenthChe Member"
for it in range(self.nit):)) Funktion der Klasse
print{f"Iteration {it , end=" ... ")

_ ,,Spatial GameSimulation® Starten der Simulation
self.compute_all_payoffs()

self.update_strategies()

self.plot_current_state(it)

mean_strat = self.players.mean_strategy() if __name__ __main__":
mean_payoff = np.mean(self.players.datal:, 4])
sim = SpatialGameSimulation(

?E}i.aV_Etrai?hﬁgtory.appendéwean_Etrat;f width=105,
self.av_payoff_history.append{mean_payoff) height=1
self.players.apply_next_strategies() nit T

rule=2,
fname = f"img-{it payoff_params=(-3,
self.fig.savefig({os.path. join(self.output_dir, f"{fname}.png”}, iﬁiﬁ:iﬂl_}:ﬂﬂp _;!

_ dpi=120, bbox_inches="tight") Gutput_dir ".,-f’r;)utput"
self.ax2.clear()
print{f mean_strat)
print{ " \nSimulation abgeschlossen.") sim.run()

print("Mittlere Auszahlungen:", [round(x,3) for x in self.av_payoff_history])

Rule 1:
Zufllig
besserer
Nachbar

Rule 2:
Tit-for-Tat

~" l}sr}- 'J:-._:'
gl = B
sl 13

t B
= g l. I-l
ot
5 31 ol
r. '
o 2

&
Jii'&

	Folie 1: Physik der sozio-ökonomischen Systeme mit dem Computer
	Folie 2: Plan für die heutige Vorlesung
	Folie 3: Evolutionäre Spieltheorie auf komplexen Netzwerken
	Folie 4
	Folie 5
	Folie 6: Betrachtetes Gefangenendilemma-ähnliches (2x2)-Spiel
	Folie 7: Spatial Games
	Folie 8: Evolutionäre Spieltheorie auf komplexen Netzwerken
	Folie 9: Jupyter Notebook: Evolutionäre räumliche Spiele Klasse der dominanten Spiele
	Folie 10: Jupyter Notebook: Evolutionäre räumliche Spiele Klasse der Koordinations- und Anti-Koordinationsspiele
	Folie 11
	Folie 12
	Folie 13: Jupyter Notebook: Evolutionäre Spiele auf unterschiedlichen komplexen Netzwerken
	Folie 14: Evolutionäre Spieltheorie auf zufälligen Netzwerken
	Folie 15: Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken Koordinationsspiele
	Folie 16: Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken Anti-Koordinationsspiele
	Folie 17: Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken Dominante Spiele
	Folie 18: Evolutionäre Spieltheorie auf vollständig verbundenen Netzwerken Dominante Spiele
	Folie 19: Evolutionäre Spieltheorie auf Ringgitter Netzwerken
	Folie 20: Evolutionäre Spieltheorie auf Kleine Welt Netzwerken
	Folie 21: Evolutionäre Spieltheorie auf skalenfreien Netzwerken
	Folie 22: Evolutionäre Spieltheorie auf skalenfreien Netzwerken
	Folie 23: Wiederholung: Replikatordynamik (für symmetrische (2x3)-Spiele)
	Folie 24: Replikatordynamik (für symmetrische (2x3)-Spiele)
	Folie 25: Replikatordynamik (für symmetrische (2x3)-Spiele, Beispiel 1)
	Folie 26: Replikatordynamik (für symmetrische (2x3)-Spiele, Beispiel 2)
	Folie 27: Replikatordynamik (Klassifizierung symmetrische (2x3)-Spiele)
	Folie 28: Jupyter Notebook Evolutionspiel4.ipynb
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41: Objektorientiertes Programm: Die Klasse „Players“
	Folie 42: Die Klasse „SpatialGameSimulation“
	Folie 43: Ende der Klasse „SpatialGameSimulation“ und Instanzbildung der Klasse
	Folie 44

