
Spring School on
Numerical Relativity and

Gravitational Wave Physics

Gravitational Waves from colliding
Compact Star Binaries in the context

of Strange/Exotic Matter

R O O M 6 6 2 0
I T P N E W B U I L D I N G , B E I J I N G
1 5 . - 2 5 . M AY, 2 0 1 7

M AT T H I A S H A N A U S K E

F R A N K F U R T I N S T I T U T E F O R A D VA N C E D S T U D I E S
J O H A N N W O L F G A N G G O E T H E U N I V E R S I T Y

I N S T I T U T E O F T H E O R E T I C A L P H Y S I C S
D E PA R T E M E N T O F R E L AT I V I S T I C A S T R O P H Y S I C S

D - 6 0 4 3 8 F R A N K F U R T A M M A I N
G E R M A N Y

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel ProgrammingParallel Programming

Lecture 12

10.02.2012

Lecture course: Computational methods in Meso-Bio-Nano Science
by Dr.phil.nat.Dr.rer.pol. Matthias Hanauske

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Contents

1. Introduction
2. Parallelization on shared memory

systems using OpenMP
3. Parallelization on distributed memory

systems using MPI
4. Further resources

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Introduction

1. Introduction
a) What is parallelization?
b) When and where can it be used?
c) Parallel architectures of computer clusters.
d) Different parallelization languages.

2. Parallelization on shared memory systems using
OpenMP

3. Parallelization on distributed memory systems using
MPI

4. Futher resources

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Introduction

Parallel Programming is a programming paradigm (a
fundamental style of computer programming).

Within a parallel computer code a single computation problem is
separated in different portions that may be executed
concurrently by different processors.

Parallel Programming is a construction of a computer code that
allows its execution on a parallel computer (multi-processor
computer) in order to reduce the time needed for a single
computation problem.

Depending on the architecture of the parallel computer (or
computer cluster) the Parallel Programming Framework
(OpenMP, MPI, Cuda, OpenCL, ...) has to be choosen .

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel computers

Parallel computer architectures:

SIMD (Single Instruction, Multiple Data)
Example: Parallel computers with graphics processing units (GPU's)
using the Cuda or OpenCL language.

MIMD (Multiple Instruction, Multiple Data)

Shared Memory
(OpenMP, OpenCL, MPI)

Distributed Memory
(MPI, (Shell programming))

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Performance

The performance of a parallel computer code can be
measured using the following characteristic values:

T(n): Time needed to run the programm on n processing elements
(e.g. CPU's, computer nodes).
Speedup: S(n):=T(1)/T(n) , Efficiency: E(n):=S(n)/n

Amdahl's law:
The “Amdahl's law” describes the speedup
of an optimal parallel computer code. T(n)
is diveded in two parts (T(n)=Ts+Tp(n)),
where Ts is the time needed for the non-
parallizable part of the programm and
Tp(n) is the parallizable part, which can be
executed concurrently by different
processors. A(n):=Max(S(n))

 A(n)=1/(a+(1-a)/n), with a:=Ts/T(1)
Amdahl's law with a=[0.01,0.4]

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Shared Memory
and OpenMP

1. Introduction

2. Parallelization on shared memory systems using OpenMP
a) Introduction to OpenMP
b) Example
c) Further OpenMP directives
d) Additional material

3. Parallelization on distributed memory systems using MPI

4. Further resources

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

OpenMP

The parallel computer language “OpenMP (Open Multi-
Processing)” supports multi-platform shared-memory parallel
programming in C/C++ and Fortran. It is a collaborative developed
parallel language which has its origin in 1997.

OpenMP separates the parallizable part of the program into several
'Threads' where each thread can be executed on a different
processing element (CPU) using shared memory.

OpenMP has the advantage that common sequential codes can
easily be changed by simply adding some OpenMP directives.
Another feature of OpenMP is that the program runs also properly
(but then sequentially, using only one thread) even if the compiler
does not know OpenMP.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Example

The simple computation problem used in the following is
the nummerical integration of an integral using the Gauss
integration method. The following integral should be
calculated for 10 different values (a=1,2,..,10).

Gauss’schen integration method.

The integration interval [0,1]
is diveded into N pieces. The
value of the integration
function is taken at the
middle of each integration
segment (Gauss method).

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Sequential Code

The integral is defined as a
function which depends on two
variables (N and a). ‘N’ is the
number of integration points
(integration segments) and ‘a’ is
the parameter defined within the
example. With the use of a ‘for-
loop’, the total area of the N-
rectangles are summed up. The
value of the integral is then
returned (dx*sum).

To calculate and output the value
of the integral for different
values of ‘a’ (a=1,..,10), the
main function of the program
contains also a ‘for-loop’. The
output contains the value of ‘a’,
the value of the calculated
integral (N=10 million) and the
difference of the calculation with
the ‘analytic’ result.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Code No.1

To parallize the code with
OpenMP, only two minor changes
are necessary:

1) The OpenMP-Header file
(omp.h) need to be included

2) The OpenMP-Pragma
(#pragma omp parallel for)
should be inserted just right
before the loop that we want to
be calculated concurrently.

During the execution of the
program (when entering the
parallized loop), several threads
are created. The number of
threads is not specified; it
depends on the number of
available processors and the size
of the loop.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Code No.1a

In respect to the ongoing
calculation, this version of the
parallized code does not differ at
all from the previous one.
Nevertheless two changes have
been made:

To compare the performance of
the parallel version of the code
with its sequential counterpart,
the time needed for the
calculation is also printed out.

To understand the ‘Thread-
based’ calculation, the id-
number of each Thread is
additionally printed out.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Running the code

To run the sequential version of the code under Linux, the
executable file (a.out) has been created using the c++ compiler.

The parallel version (No.1a) has been created using c++ with the option ‘-
fopenmp’. The program was executed on a system with two CPU’s.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Code No.2
(wrong!)

The OpenMP-Pragma (#pragma
omp parallel for) has been
inserted just right before the
loop that is inside the function
which calculates the integral.

Two problems arise when executing the
program:

1) The parallel program needs even
more time then the sequential version.

2) The integrals are calculated wrong
(see hudge difference to the analytic
result).

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Code No.2

The problem of the previous code is due to a
wrong comunication and interference between
the threads at the code line

 sum += 1/(1+a*x*x);

During the execution, this line is actually
separated in several steps:

1) The values of sum,a and x are read.

2) The value of ‘1/(1+a*x*x)’ is calculated and
added up with the value of ‘sum’.

3) The result of 2) is written as the new value
of ‘sum’ to the adress of the variable ‘sum’.

When several threads are created inside the
loop, it is possible that while one thread (A) is at
stage 2), another thread (B) begins at stage 1).
If A writes its new value at stage 3), B is at
stage 2). When B finally writes its new value at
stage 3), the integration increment of A is lost.
This leads to wrong results and slowdown of
execution.

This ‘race condition’ can be solved using the
syncronisation directive

 reduction(+:sum)

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Running the code

Sequential version:

Parallel version (No.2): Due to the non-sequential summation of the different parts of
the integral, a different rounding error occurs within the parallel version. This is the reason
that the calculated integrals are not exactly the same as in the sequential version.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Performance

The following calculations
where performed on the
Center for Scientific
Computing (CSC) of the
Goethe University Frankfurt
using the FUCHS-CPU-Cluster.
The upper picture shows the
time needed (T(n)) to run the
programm using n processing
elements (respectively
threads) and the lower picture
shows the speedup S(n). The
black curve indicates the
performance of the parallel
code No.1 and the red curve
shows the results of code
No.2.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

 Further OpenMP directives

Loop parallelization(#pragma omp parallel for ...):
● Access to variables (shared(), private(), firstprivate(), reduction())
● Syncronisation (atomic, critical)
● Locking (omp_init_lock(),omp_destroy_lock(),omp_set_lock(),_unset_lock())
● Barriers (#pragma omp barrier)
● Conditional parallelization (if(...))
● Number of threads (omp_set_num_threads())
● Loop workflow (shedule())

Additional material:
The OpenMP® API specification for parallel programming: http://openmp.org/
The Community of OpenMP: http://www.compunity.org/
OpenMP-Tutorial: https://computing.llnl.gov/tutorials/openMP/
Book: Parallel Programming in C with MPI and OpenMP, by Michael J. Quinn.
Book: Patterns for Parallel Programming, by Timothy G. Mattson, et.al.
Book: Using OpenMP, by Chapman,et.al.
Book: OpenMP by Hoffmann, Lienhart
Tutorium Examples: http://fias.uni-frankfurt.de/~hanauske/VARTC/T2/intro/openmp/

http://openmp.org/
http://www.compunity.org/
https://computing.llnl.gov/tutorials/openMP/

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Distributed Memory
and MPI

1. Introduction

2. Parallelization on shared memory systems using OpenMP

3. Parallelization on distributed memory systems using MPI
a) Introduction to MPI
b) Example
c) Additional material

4. Further resources

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

MPI

The parallel computer language “MPI (Message Passing
Interface)” supports multi-platform shared- amd distributed-
memory parallel programming in C/C++ and Fortran. The MPI
standard was firstly presented at the “Supercomputing '93”-
conference in 1993.

With MPI, the whole computation problem is separated in different
Tasks (processes). Each process can run on a different computer
nodes within a computer cluster. In contrast to OpenMP, MPI is
designed to run on distributed-memory parallel computers.

As each process has its own memory, the result of the whole
computation problem has to be combined by using both point-to-
point and collective communication between the processes.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Code No.1

To parallize the code with MPI,
some changes are necessary:

1) The MPI-Header file (mpi.h)
need to be included.

2) Arguments has to be included
within the main function.

3) Several other things need to
be specified

At the beginning of the execution of
the program a specified number of
processes (p) are created. Each
process has its own id-number and it
can be executed on different nodes
within a computer cluster or on
different processors of one node.
Within this version of the parallel
program the loop which goes over
different values of ‘a’ (a=1,..,10) is
diveded among different processes.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

 Running the code No.1

To build the executable file (a.out) of the parallel version of the MPI-
program under Linux, a mpi-compiler (mpic++, mpicxx, mpicc,...) has to
be used. To run the program, on needs to use the command “mpirun” and
specify the number of processes (e.g. -np 2).

The first run on
the right hand
side was
performed by
only using one
process
(sequential
version).

The second run
 was much
faster and has
used two
processes.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Code No.2

Within this parallel version only one
integral was calculated (a=1), but the
accuracy of the performed numerical
calculation has been increased (N=500
million). The loop that performs these 500
milion iterations is diveded among
different processes.

As every process nows only the part that
it has calculated, the processes need to
comunicate in order to calculate the value
of the whole integral. Within MPI, several
way of communications are possible.
Within this version a point-to-point
comunication has been used.

The MPI function “Send” was
used by every process (except
process 0) to send its value to
process 0.

Process 0 then receives all the
different values, makes a sum
and prints the final result out.

One can use collective operation
“MPI_Reduce” for this porpouse.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

 Running the code No.2

To build the executable file (a.out) of the parallel version of the MPI-
program under Linux, a mpi-compiler (mpic++, mpicxx, mpicc,...) has to
be used. To run the program, on needs to use the command “mpirun” and
specify the number of processes (e.g. -np 2). The first run on the right
hand side was performed by only using one process (sequential version).
The second run was much faster and has used two processes.

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

 Further MPI Functions

Point-to-point message-passing:
● Int MPI-Send(buff, count, MPI_type, dest, tag)
 e.g. MPI::COMM_WORLD.Send(&ergebnis[id], 1, MPI::DOUBLE, 0, 1);

● Int MPI-Recv(buff, count, MPI_type, source, tag, stat)
 e.g. MPI::COMM_WORLD.Recv(&ergebnis[q], 1, MPI::DOUBLE, q, 1, status);

Additional material:
MPI-Tutorial: https://computing.llnl.gov/tutorials/mpi/
Book: Parallel Programming in C with MPI and OpenMP, by Michael J. Quinn.
Book: Patterns for Parallel Programming, by Timothy G. Mattson, et.al.
MPI-Examples: http://people.sc.fsu.edu/~jburkardt/cpp_src/mpi/mpi.html
Tutorium Examples: http://fias.uni-frankfurt.de/~hanauske/VARTC/T2/intro/mpi/

● Collective Communication: MPI_Bcast
● Barriers: MPI_Barrier
● ….

MesoBioNano- Science Group @ FIAS (www.fias.uni-frankfurt.de/mbn)

Parallel Programming
Thank you for your attention

Parallel Programming
Thank you for your attention

Lecture 12

10.02.2012

Lecture course: Computational methods in Meso-Bio-Nano Science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

