Im folgenden werden einige grundlegende Größen der allgemeinen Relativitätstheorie am Beispiel der allgemeinen statischen, isotropen Metrik erläutert. Zunächst wird das Python Packet "GraviPy" eingebunden, welches auf dem Packet SymPy basiert und symbolische Berechnungen in der Allgemeinen Relativitätstheorie relativ einfach möglich macht.
from gravipy.tensorial import *
from sympy import init_printing
import inspect
init_printing()
Definition der Koordinaten und der kovarianten Raumzeit-Metrik einer allgemeinen statischen, isotropen Metrik:
$$x^\mu=(t,r,\theta,\phi)\quad, \qquad g_{\mu\nu}=\left( \begin{array}{ccc} A(r) & 0 & 0 & 0\\ 0& -B(r)& 0&0 \\ 0& 0& -r^2& 0\\ 0& 0& 0& -r^2 \hbox{sin}^2(\theta)\\ \end{array} \right)$$, bzw. auskommentiert, Schwarzschildmetrik: $$ g_{\mu\nu}=\left( \begin{array}{ccc} 1-\frac{2\,M}{r} & 0 & 0 & 0\\ 0& -\frac{1}{1-\frac{2\,M}{r}}& 0&0 \\ 0& 0& -r^2& 0\\ 0& 0& 0& -r^2 \hbox{sin}^2(\theta)\\ \end{array} \right)$$
# define some symbolic variables
t, r, theta, phi, M = symbols('t, r, \\theta, \phi, M')
A = Function('A')(r)
B = Function('B')(r)
# create a coordinate four-vector object instantiating
# the Coordinates class
x = Coordinates('x', [t, r, theta, phi])
# define a matrix of a metric tensor components
#Metric = diag((1-2*M/r), -1/(1-2*M/r), -r**2, -r**2*sin(theta)**2)
Metric = diag(A, -B, -r**2, -r**2*sin(theta)**2)
# create a metric tensor object instantiating the MetricTensor class
g = MetricTensor('g', x, Metric)
g(All, All)
Kontravariante Form der Metrik:
$$ g^{\mu\nu}=\left( \begin{array}{ccc} \frac{1}{A(r)} & 0 & 0 & 0\\ 0& -\frac{1}{B(r)}& 0&0 \\ 0& 0& -\frac{1}{r^2}& 0\\ 0& 0& 0& -\frac{1}{r^2 \hbox{sin}^2(\theta)}\\ \end{array} \right)$$g(-All, -All)
Partielle Ableitung: $$\partial_\mu = \frac{\partial}{\partial x^\mu}$$ Hier speziell $\partial_2 g_{1 1} = \partial_r g_{t t}$, wobei $$ g_{\mu\nu| \alpha} := \partial_\alpha g_{\mu\nu} = \frac{\partial }{\partial x^\alpha}g_{\mu\nu} $$
g.partialD(1, 1, 2)
g(1,1).diff(x(-2))
Die Chistoffel Symbole in (kontravarianter Form): $$ \Gamma_{\rho \mu \nu} = g_{\rho \sigma}\Gamma^{\sigma}_{\ \mu \nu} = \frac{1}{2}(g_{\rho \mu| \nu} + g_{\rho \nu| \mu} - g_{\mu \nu| \rho})$$
Hier speziell $$ \Gamma_{2 2 2} = \Gamma_{r r r}$$
Ga = Christoffel('Ga', g)
Ga(2, 2, 2)
Die kovariante Ableitung eines Tensors zweiter Stufe $T^\mu{}\!_\nu$ ist wie folgt definiert:
$$ \nabla\!_\alpha T^\mu{}\!_\nu = \partial_\alpha T^\mu{}\!_\nu + \Gamma^\mu_{\alpha \rho} T^\rho{}\!_\nu - \Gamma^\rho_{\alpha \nu} T^\mu{}\!_\rho $$T = Tensor('T', 2, g)
T.covariantD(1,2,1)
# Beachten Sie, dass die ersten zwei Zahlen die Indices des Tensors
# und dritte Zahl die Koordinate angibt nach der differenziert wird
Die kovariante Ableitung der Metric $g_{\mu \nu}$ ist identisch 0.
g.covariantD(1,1,2)
Der Riemann Tensor: $$ R_{\mu \nu \rho \sigma} = \frac{\partial \Gamma_{\mu \nu \sigma}}{\partial x^{\rho}} - \frac{\partial \Gamma_{\mu \nu \rho}}{\partial x^{\sigma}} + \Gamma^{\alpha}_{\ \nu \sigma}\Gamma_{\mu \rho \alpha} - \Gamma^{\alpha}_{\ \nu \rho}\Gamma_{\mu \sigma \alpha} - \frac{\partial g_{\mu \alpha}}{\partial x^{\rho}}\Gamma^{\alpha}_{\ \nu \sigma} + \frac{\partial g_{\mu \alpha}}{\partial x^{\sigma}}\Gamma^{\alpha}_{\ \nu \rho} $$
Hier speziell $$ R_{1 3 1 3} = R_{t \theta t \theta} $$
Rm = Riemann('Rm', g)
Rm(1,3,1,3)
Oder in gemischt kontra- kovarianter Form $$ R^{1}{}_{3 1 3} = R^{t}{}_{\theta t \theta} $$
Rm(-1,3,1,3)
Der Ricci Tensor:
$$ R_{\mu \nu} = \frac{\partial \Gamma^{\sigma}_{\ \mu \nu}}{\partial x^{\sigma}} - \frac{\partial \Gamma^{\sigma}_{\ \mu \sigma}}{\partial x^{\nu}} + \Gamma^{\sigma}_{\ \mu \nu}\Gamma^{\rho}_{\ \sigma \rho} - \Gamma^{\rho}_{\ \mu \sigma}\Gamma^{\sigma}_{\ \nu \rho} $$Ri = Ricci('Ri', g)
Ri(All, All)
Der Ricci Tensor lässt sich auch durch folgende Kontraktion aus dem Riemann Tensor berechnen: $R_{\mu \nu} = R^{\rho}_{\ \mu \rho \nu} $
ricci = sum([Rm(i, All, k, All)*g(-i, -k)
for i, k in list(variations(range(1, 5), 2, True))],
zeros(4))
ricci.simplify()
ricci
Der Ricci Skalar ergibt sich aus der Kontraktion des Ricci Tensors: $R = R_{\mu}^{\ \mu} = g^{\mu \nu}R_{\mu \nu}$
Ri.scalar()
Der Einstein Tensor:$$ G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2}g_{\mu \nu}R $$
G = Einstein('G', Ri)
G(All, All)