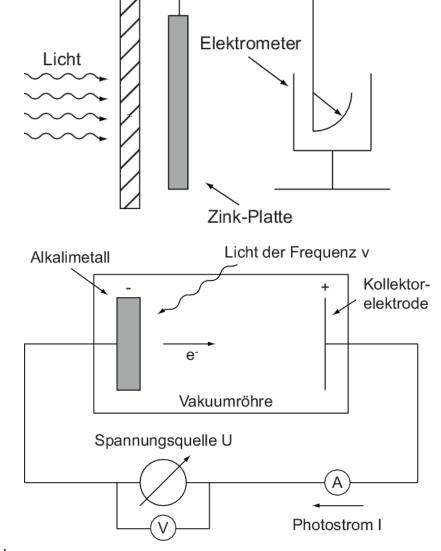
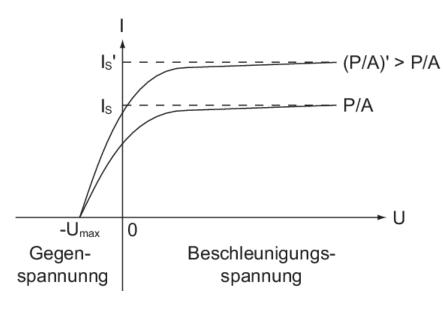
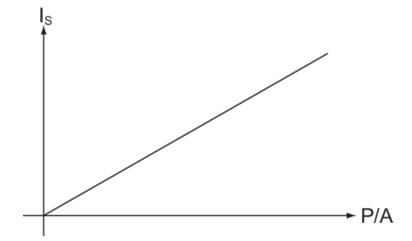
Theoretische Physik 3 für Lehramtsstudenten


Photoeffekt – Historischer Hintergrund

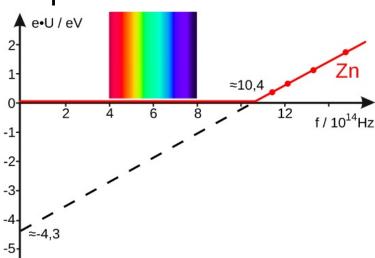
- 1839 erstmals von Alexandre Edmond Becquerel entdeckt
- 1886 erste systematische Untersuchungen durch Heinrich Hertz und Wilhelm Hallwachs
- 1900 erste quantitative Untersuchungen in einer Hochvakuumapparatur durch Philipp Lenard
- 1905 theoretische Erklärung durch Einstein

Photoeffekt - Aufbau

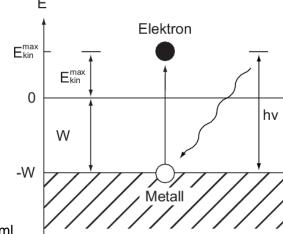

Filter


- Frühe Versuche mit variierendem Aufbau, als Kern immer ein mit Licht bestrahltes Metall
- Heutzutage:
 Gegenfeldmethode,
 erstmals 1912-15 für
 präzise Messungen
 genutzt

Photoeffekt – Experimentelle Resultate


- Photostrom I abhängig von Gegenspannung U und Lichtintensität P/A
- Sättigungsstromstärke I_S bei hinreichend großer Gegenspannung
- Maximale kinetische Energie $(-e) \cdot (-U_{max})$
- U_{max} rein (materialunabhängig) proportional zur Frequenz v des genutzten Lichtes
- Nötige Minimalfrequenz v_{min} materialabhängig

Photoeffekt - Interpretation


- Klassische Annahme: Licht als Welle
 - Elektronen nehmen Energie von Lichtwellen auf bis die Austrittsenergie W übertroffen ist
 - ➤ Keine Minimalfrequenz, endliche Dauer bis zum Auslösen der Elektronen, maximale kinetische Energie abhängig von der Lichtintensität
 - > Alles im Widerspruch zum Experiment

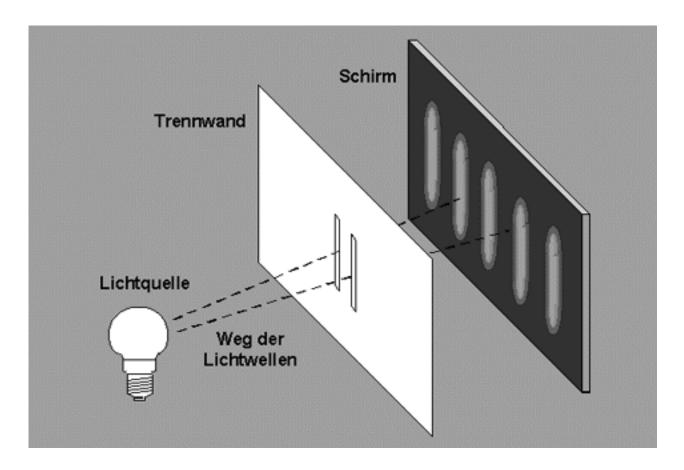
Photoeffekt - Interpretation

- Neuer (quantenmechanischer) Ansatz von Einstein:
 - Die kinetische Energie zum herauslösen eines Elektrons beträgt $E_{kin} = hv W$
 - Postulat: Licht verhält sich wie ein Teilchen mit Energie $h\nu$, genannt Lichtquant oder Photon
 - Photon kann gesamte Energie auf einzelnes Elektron übertragen

h = Plancksches Wirkunsquantum

Bildquelle:

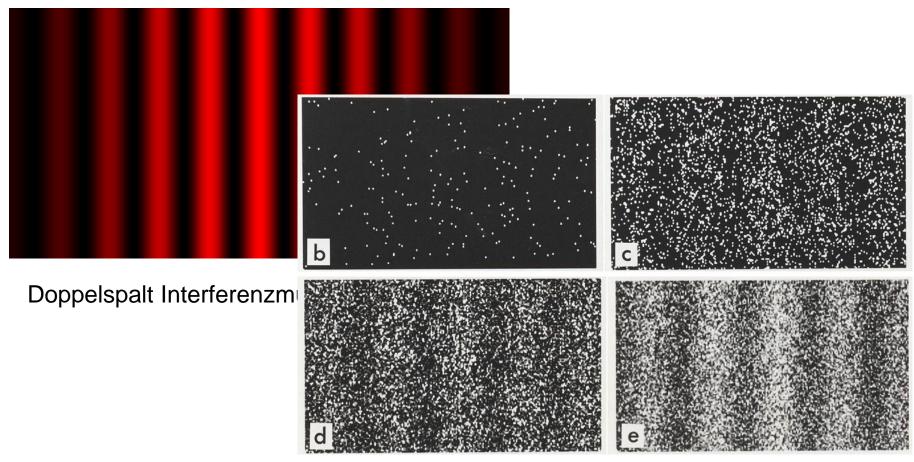
http://qudev.phys.ethz.ch/content/science/BuchPhysikIV/PhysikIVch2.html


Anwendungen der Quantenmechanik – Photoeffekt

- Lichtsensoren:
 - Nutzung des Photoeffektes zur präzisen Erfassung von geringen Mengen an Photonen (z.B. in der Astronomie)
 - Nutzung der präzisen Abhängigkeiten von Lichtintensität und –frequenz für Bildsensoren, z.B. in Digitalkameras
 - Heutzutage meist Nutzung des inneren Photoeffekts mit Halbleitern
 - Keine austretenden Elektronen, keine Vakuumröhren nötig

Doppelspalt – Historischer Hintergrund

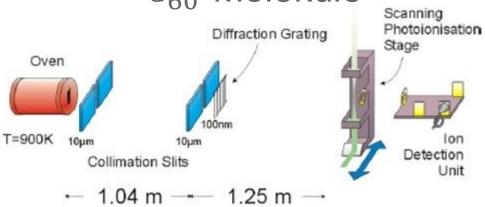
- 1802 erstmals von Thomas Young zum Nachweis der Wellennatur des Lichtes durchgeführt
 - Streit zwischen Wellen- und Korpuskel(Teilchen)natur des Lichtes scheint bis zu Einsteins Postulat zum Photoeffekt geklärt
- Ab 1927 diverse Experimente an Kristallgittern (Brechung am Gitter, entspricht Spaltversuchen mit sehr vielen Spalten)
- 1961 erstmals von Claus Jönsson mit massiven Teilchen (Elektronen) erfolgreich durchgeführt
- Heutzutage erfolgreich mit $C_{60}F_{48}$ getestet

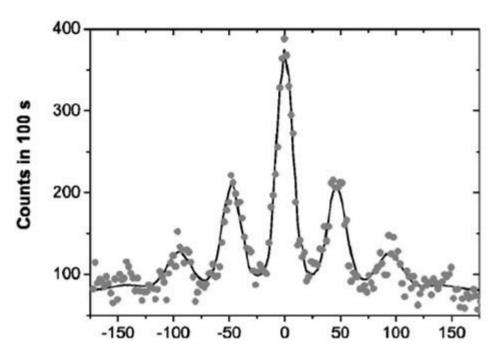

Doppelspalt -Aufbau

 Meist wird als Lichtquelle monochromatisches Licht verwendet

Bildquelle: http://www.seilnacht.com/Lexikon/f_doppel.gif

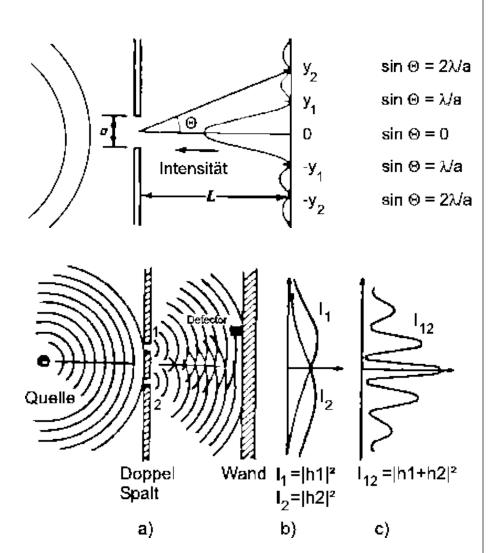
Doppelspalt – Experimentelle Resultate

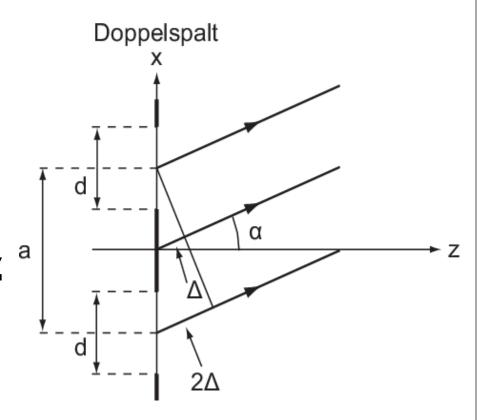



Interferenzmuster eines Doppelspaltexperiments mit verschiedener Anzahl Elektronen (b. 200, c. 6000,

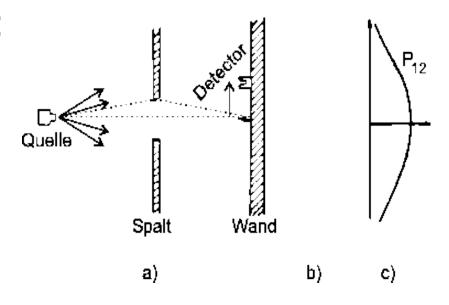
d: 40000, e: 140000).

Bildquelle: https://de.wikipedia.org/wiki/Welle-Teilchen-Dualismus


Doppelspalt – Experimentelle Resultate – C_{60} -Moleküle



Bildquelle: Vorlesungsskript: R. Roth "Quantenmechanik"

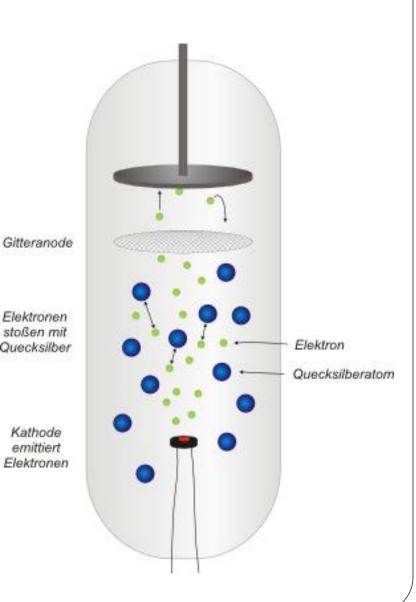

- Klassische Annahme: Licht als Welle
 - Lichtwellen streuen im Spalt
 - Phasendifferenz durch Wegunterschied der Lichtwellen am Schirm → destruktive & konstruktive Interferenz
 - Überlagerung der beiden Einzelspaltinterferenzmuster beim Doppelspalt

- Doppelspaltmaxima bei $\sin \alpha_{max} = m \; \frac{\lambda}{a},$ $m \in \mathbb{Z}$
- Unterdrückt durch Einzelspaltminima bei $\frac{m}{n} = \frac{a}{d}, n \in \mathbb{Z} \setminus \{0\}, m \in \mathbb{Z}$
- Doppelspaltminima bei $\sin \alpha_{min} = \frac{(2m+1)}{2} \frac{\lambda}{a}$, $m \in \mathbb{Z}$

- Klassische Annahme:
 - Keine Interferenz bei einzelnen Photonen oder Materieteilchen erwartet
 - Einfache Impulsverteilung erwartet
 - Aber: Interferenzmuster auch bei Materieteilchen und einzelnen Photonen gefunden!

- Quantenmechanische Annahme:
 - ➤ Teilchen wird eine Wellenlänge zugeordnet (De Broglie Wellenlänge):

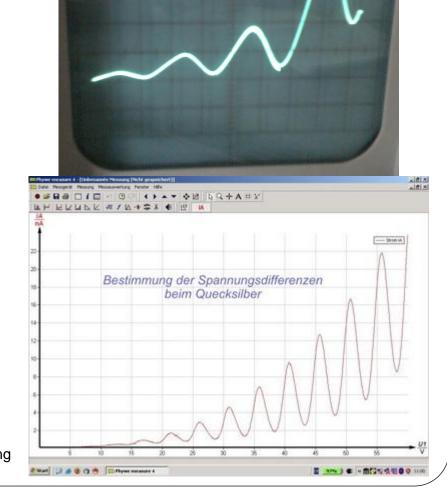
$$E = mc^2$$
 $E = hv \Rightarrow \lambda = \frac{mc}{h}$


Selbstinterferenz einzelner Teilchen durch Überlagerung aller möglichen Wege (Zusammenbruch durch präzise Messung des genommenen Weges)

Franck-Hertz-Versuch – Historischer Hintergrund

- 1911 bis 1914 erstmals von James Franck und Gustav Hertz zur Bestimmung der Ionisationsenergie von Quecksilber durchgeführt
- 1913 Beschreibung des theoretischen Hintergrundes durch das Atommodel von Niels Bohr

Franck-Hertz-Versuch – Aufbau


- Glaskolben mit Quecksilberdampf, Glühkathode, Gitter mit Beschleunigungsspann ung und Anode mit Gegenspannung
- Beschleunigung der Elektronen zum Gitter und Stöße mit den Quecksilberatomen
- Messung der Restenergie der Elektronen über die Gegenspannung an der Anode

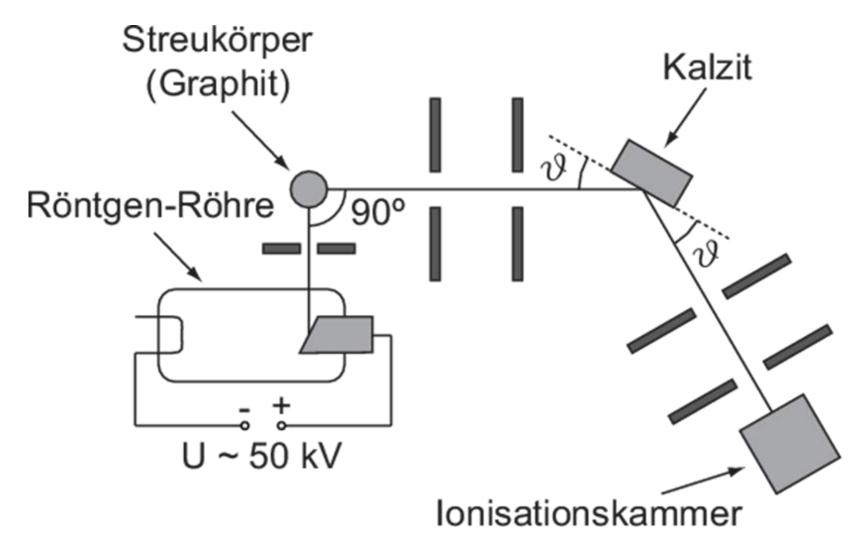
Bildquelle: https://lp.uni-goettingen.de/get/text/1612

Franck-Hertz-Versuch – Experimentelle Resultate

- Zunächst steigende Restenergie der Elektronen mit stärkerer Beschleunigungsenergie
- Dann starker Abfall der Restenergie
- Wiederholung dieser beiden Verhalten in Regelmäßigem Abstand von 4,9eV
- Ausstrahlung von UV-Licht von 253nm (4,9eV) durch das Quecksilbergas

Franck-Hertz-Versuch – Interpretation

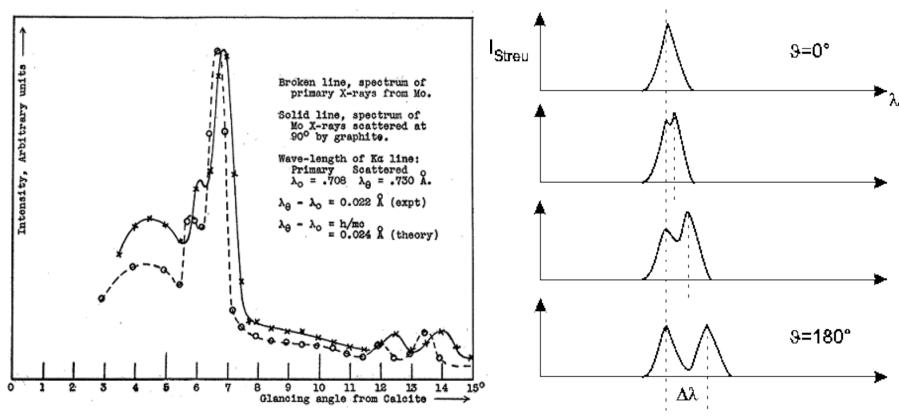
- Klassische Annahme:
 - Nur ein Energieabfall bei Erreichen der Ionisationsenergie von Quecksilber, danach stetiger Anstieg der Restenergie


Franck-Hertz-Versuch – Interpretation

- Quantenmechanische Annahme:
 - Elektronen des Atoms haben diskrete Energiezustände
 - Klassischer elastischer Stoß mit dem Atom bei zu geringer Energie der Elektronen
 - ➤ Anregung von Elektronen in niedrigen Energieniveaus in höhere Zustände bei genügend Energie ⇒ Übertragung von quantisierten Energiemengen bei inelastischem Stoß
 - Angeregtes Elektron fällt durch Energieabgabe in Form von Photonen in den Ursprungszustand zurück
 - Niedrigstes anregbares Energieniveau von Quecksilber bei 4,9eV

Compton-Effekt – Historischer Hintergrund

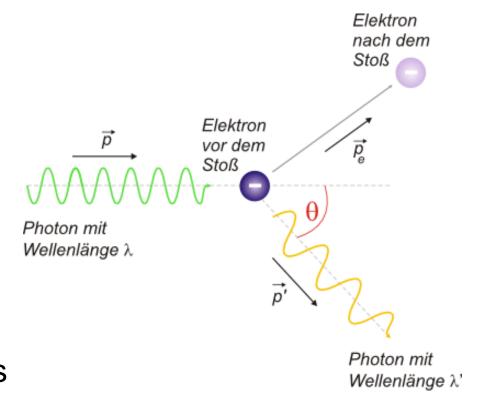
- 1922 erstmals von Arthur Compton im Experiment gefunden
- 1927 Nobelpreis


Compton-Effekt - Versuchsaufbau

Bildquelle: http://qudev.phys.ethz.ch/content/science/BuchPhysikIV/PhysikIVch4.html

Compton-Effekt – Experimentelle Resultate

 Verschiebung des Spektrums zu größeren Wellenlängen in Abhängigkeit des Streuwinkels



Compton-Effekt - Interpretation

- Klassische Annahme:
 - Lichtwellen regen freie Elektronen (Thomson-Streuung) oder gebundene Elektronen (Rayleigh-Streuung) zur Oszillation an
 - Oszillierende Elektronen strahlen EM-Wellen der gleichen Wellenlänge aus
 - ➤ Aber: Änderung der Wellenlänge im Experiment

Compton-Effekt - Interpretation

- Quantenmechanische Annahme:
 - Elastischer Stoß zwischen Photon und Elektron
 - Teilchenbild: Photon und Elektron als Teilchen
 - Wellenbild: Photon als EM-Welle, Elektron als Materiewelle

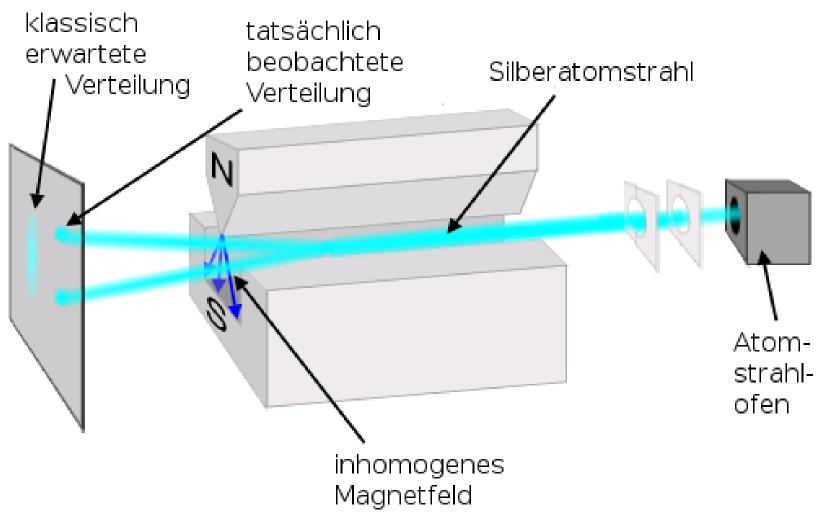
Compton-Effekt - Interpretation

- Quantenmechanische Annahme:
 - > Energie-Impuls-Erhaltung:

$$E_{\gamma} + E_{e} = E'_{\gamma} + E'_{e}$$

 $\vec{p}_{\nu} + \vec{p}_{e} = \vec{p}'_{\nu} + \vec{p}'_{e}$

> Wellenlängenänderung:


$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos(\theta))$$

Mit Compton-Wellenlänge $\lambda_C = \frac{h}{m_e c}$ (Impulsunabhängig)

Stern-Gerlach-Versuch – Historischer Hintergrund

- 1922 erstmals von Otto Stern und Walther Gerlach im Physikalischen Verein Frankfurt mit Silberatomen durchgeführt
- 1925 neue Deutung erforderlich durch Elektronenspin
- 1927 Nachweis des Effektes durch Phipps und Taylor an Wasserstoffatomen

Stern-Gerlach-Versuch - Aufbau


Bildquelle: https://de.wikipedia.org/wiki/Stern-Gerlach-Versuch

Stern-Gerlach-Versuch - Aufbau

- Aufspaltung eines Atomstrahles durch ein starkes Magnetfeld
- Im ursprünglichen Versuch: Silberatome aus einem Atomstrahlofen, anschließende Ablagerung auf einer Glasplatte (≙Detektor)
- Bedingung an die Atome: Keine elektrische Ladung (zu starker Einfluss der Lorentzkraft)

Stern-Gerlach-Versuch – Experimentelle Resultate

 Aufteilen des Silberatomstrahles in zwei distinkte (polarisierte) Teilstrahlen

Bildquelle: http://mriquestions.com/spin-vs-spin-state.html

Stern-Gerlach-Versuch – Interpretation

- Klassische Annahme:
 - ► Durch magnetisches Moment der Atome wirkt eine Kraft: $\vec{F} = \vec{\nabla}(\vec{\mu} \times \vec{B})$
 - ➤ Zufällige Ausrichtung der Silberatome des Atomofens → Breite Verteilung erwartet
 - ➤ Aber: Quantisierte Ergebnisse

Stern-Gerlach-Versuch – Interpretation

- Quantenmechanische Annahme:
 - ➤ Quantisierter Drehimpuls: Magnetische Drehimpulsquantenzahl m_l kann nur Werte (2l+1) Werte $m_l = -l, -l+1, ..., +l$ annehmen
 - Ganzzahliger Drehimpuls erzeugt ungerade Anzahl von polarisierten Teilstrahlen
 - Postulierter Elektronenspin $s = \frac{1}{2}$ sorgt für gerade Anzahl von Teilstrahlen
 - ➤ Bei Silber: Gesamtdrehimpuls l=0, alle Spins außer dem äußersten 5s-Elektron heben sich gegenseitig auf → Silberatome verhalten sich wie Spin $\frac{1}{2}$ -Teilchen

Anwendungen der Quantenmechanik – Stern-Gerlach-Versuch

- Polarisierte Teilchenstrahlen:
 - Nutzung für die Erzeugung von (elektrisch neutralen) Teilchenstrahlen mit vorgegebener Polarisationsrichtung (z.B. für Teilchenbeschleuniger)
 - Meist Nutzung mit Quadro- oder Sextupolmagneten (fokussiert eine Polarisation in die Mitte, defokussiert andere Polarisationen)

EPR – Historischer Hintergrund

- 1935 von Albert Einstein, Boris Podolsky und Nathan Rosen aufgestelltes Gedankenexperiment zum Beweis, dass die Quantenmechanik unvollständig ist
- 1960 theoretische Grundlage zur möglichen Falsifizierung der EPR-Überlegung durch die Bell'sche Ungleichung von John Stewart Bell (muss von klassischen Theorien erfüllt werden)
- 1982 erste experimentelle Überprüfung

EPR - Versuchsaufbau

- Quelle für "verschränkte" Teilchen: der exakte Zustand der beiden Teilchen ist unbestimmt, der Zustand eines Teilchens lässt auf den des anderen schließen (z.B. Gesamtimpuls, Spin, Drehimpuls = 0)
- Im Ursprünglichen Gedankenexperiment:
 - > Impuls und Ort sind korreliert
 - Durch Messung an Teilchen 1 wird Impuls/Ort von Teilchen 2 ohne Messung bestimmt (→ keine Veränderung des Zustands)
 - ▶ Beide Eigenschaften könnten ohne direkte Messung an Teilchen 2 bestimmt werden → beide müssten exakt feststehen (im Widerspruch zur Unschärferelation)

EPR - Versuchsaufbau

- Später meist durchgeführtes Experiment:
 - Spontaner Zerfall eines Spin = 0 Teilchens in 2 (Spin = 1) Photonen
 - ➤ Messung der Polarisation der beiden Photonen weit (bis über 100km) voneinander entfernt
 - Ausrichtung der Polarisationsfilter erst kurz vor der Messung (keine Informationsübertragung mit Lichtgeschwindigkeit möglich)

EPR – Experimentelle Ergebnisse

 Mittelwerte der Ergebnisse verletzen die Bell'sche Ungleichung (→ Voraussagen der Quantenmechanik stimmen)

EPR - Interpretation

- Klassische Annahme:
 - Quantenmechanik sollte eine klassische Theorie sein (realistisch und lokal)
 - ➤ Realistisch: alle messbaren Eigenschaften liegen bereits vor der Messung vor (unter Umständen unbekannt durch Nichtwissen von Variablen)
 - Lokal: Messung an einem Ort sorgt nicht instantan für Veränderung an einem anderen Ort

EPR - Interpretation

- Quantenmechanische Annahme:
 - ➤ Ist keine klassische Theorie (mindestens Lokalität oder Realismus nicht erfüllt)
 - Verborgene Variablen (keine Überlagerten Zustände, dafür unbekannte Variablen) nur durch Aufgabe der Lokalität möglich

Anwendungen der Quantenmechanik - EPR

Qubits:

- Puantenbits als Grundlage für Quantencomputer mit möglichen Zuständen $|\varphi\rangle = \alpha|0\rangle + \beta|1\rangle$, $\alpha^2 + \beta^2 = 1$ statt 0 oder 1 wie bei klassischen Bits
- Quantenkryptographie:
 - ➤ Übertragung eines verschränkten Quantenschlüssels (Abhören verändert die Quantenzustände, Abhören von Gegnern mit unbegrenzten Mitteln fällt auf)