

GR on the Computer

Vorlesung vertreten durch Michael T. Rattay, Goethe University Frankfurt 15. June 2018

Compact object zoo

- End products of stellar evolution (compact stars)
- White dwarfs $\left(\sim \mathbf{r}_{\text {Earth }}, \sim \mathbf{M}_{\odot}\right)$ remnants of stellar collapse (<8M ${ }_{\odot}$)
- Neutron stars ($\mathrm{r}_{\text {ws }} \sim 10 \mathrm{~km}$, $\leq 2.17 \mathrm{M}_{\odot} \equiv \mathrm{M}_{\text {тоv }}$, $\boldsymbol{\rho}_{\mathbf{c}} \geqq \boldsymbol{\rho}_{\mathbf{0}}$); produced by supernovae ($\mathbf{8} \mathbf{M}_{\odot}$ to ~25 \mathbf{M}_{\odot}), upheld by neutron degeneracy pressure
- Stellar black holes, equilibrium of degeneracy pressure against gravity breaks down, escape velocity reaches c; created by stars $\geqq \mathbf{2 5} \mathbf{M}_{\odot}$
- Other compact objects
- Intermediate and supermassive black holes
- Exotic stars (Quark stars, Boson stars, etc.)

Solving General Relativity

- GR solutions depend on the considered system
- with enough symmetries \rightarrow analytical solutions
- with small parameters \rightarrow pertubative solutions
- If no symmetries, strong fields and dynamic system \rightarrow solutions by numerical relativity
- Evolution of the system \rightarrow relativistic hydrodynamics
- Equation of state determines solutions: P(p)
- Exact EOS for dense matter is not known \rightarrow different models in use
- Mass radius relation, causality and (future) observations constraint EOS

Numerical Relativity and Relativistic Hydrodynamics of Binary Neutron Star Mergers

A realistic numerical simulation of a twin star collapse, a merger of two compact stars or a collapse to a black hole needs to go beyond a static, spherically symmetric TOV-solution of the Einstein- and hydrodynamical equations.

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}
$$

$$
\begin{aligned}
\nabla_{\mu}\left(\rho u^{\mu}\right) & =0, \\
\nabla_{\nu} T^{\mu \nu} & =0 .
\end{aligned}
$$

$(3+1)$ decomposition of spacetime

$$
g_{\mu \nu}=\left(\begin{array}{cc}
-\alpha^{2}+\beta_{i} \beta^{i} & \beta_{i} \\
\beta_{i} & \gamma_{i j}
\end{array}\right)
$$

$$
d \tau^{2}=\alpha^{2}\left(t, x^{j}\right) d t^{2} \quad x_{t+d t}^{i}=x_{t}^{i}-\beta^{i}\left(t, x^{j}\right) d t
$$

All figures and equations from: Luciano Rezzolla, Olindo Zanotti: Relativistic Hydrodynamics, Oxford Univ. Press, Oxford (2013)

Numerical relativity 1/4

- Evolve spacetime: 3+1 split \rightarrow back to space+time
- Define spacelike hyper surfaces $\boldsymbol{\Sigma}_{\mathbf{t}}$ with:
- Normal one form $\boldsymbol{\Omega}_{\mu}=\boldsymbol{\nabla}_{\mu}$ tand...
- Unit normals: $\quad \mathbf{n}_{\mu}=-\boldsymbol{\alpha} \boldsymbol{\Omega}_{\mu} \quad$ (future pointing)
- Spatial tensor contractions vanish: $\mathbf{v}^{\mu} \mathbf{n}_{\boldsymbol{\mu}}=\mathbf{0}$
- Differential geometry in $\boldsymbol{\Sigma}_{\mathbf{t}}$ (metric, derivative ...):
- Metric: $\quad \boldsymbol{\gamma}_{\boldsymbol{\rho \sigma}}=\mathbf{g}_{\alpha \beta} \boldsymbol{\gamma}^{\alpha}{ }_{\sigma} \boldsymbol{\gamma}^{\beta}{ }_{\rho}=\mathbf{g}_{\alpha \beta}+\mathbf{n}_{\alpha} \mathbf{n}_{\beta}$
- Derivative: $\mathbf{D}_{\boldsymbol{\alpha}} \mathbf{f}=\boldsymbol{\gamma}_{\alpha}{ }^{\beta} \boldsymbol{\nabla}_{\boldsymbol{\beta}} \mathbf{f}$ and $\mathbf{D}_{\alpha} \mathbf{v}^{\boldsymbol{\beta}}=\mathbf{\gamma}_{\alpha}{ }^{\boldsymbol{\sigma}} \boldsymbol{\gamma}^{\beta}{ }_{\rho} \boldsymbol{\nabla}_{\boldsymbol{\sigma}} \mathbf{v}^{\rho}$
- Spatial Riemann tensor: ${ }^{(3)} \mathbf{R}^{\rho}{ }_{\sigma \alpha \beta} \mathbf{v}_{\rho}=\mathbf{2} D_{[\beta} D_{\alpha]} \mathbf{v}_{\rho}$

Numerical relativity 2/4

- Embed $\boldsymbol{\Sigma}_{\mathbf{t}}$ in the manifold with extrinsic curvature:

$$
K_{\sigma \rho}=\gamma_{\sigma}^{\alpha} \gamma_{\rho}^{\beta} \nabla_{(\alpha} n_{\beta)}=-1 / 2 \mathcal{L}_{n} \gamma_{\sigma \rho}
$$

- Relate 4D and 3D curvature: Gauss, Cadazzi and Ricci equations (plenty calculations!)
- Adopt coordinates $\mathbf{X}^{\alpha}=\left[\mathbf{t}, \mathbf{x}^{\mathbf{i}}\right]$ and time vector $\mathbf{t}^{\boldsymbol{\sigma}}=\boldsymbol{\alpha} \mathbf{n}^{\boldsymbol{\sigma}}+\boldsymbol{\beta}^{\boldsymbol{\sigma}}$
- Decompose Einstein to $3+1$ equations $\left(\mathbf{S}_{\sigma \rho}=\boldsymbol{\gamma}^{\alpha}{ }_{\sigma} \boldsymbol{\gamma}^{\beta}{ }_{\rho} \mathbf{T}_{\alpha \beta}\right)$:
- $n n:{ }^{(3)} \mathbf{R}+K^{2}-K_{i j} K^{i j}=\mathbf{1 6 \pi \rho} \quad\left(\rho=\mathbf{T}_{\alpha \beta} \mathbf{n}^{\alpha} \mathbf{n}^{\beta}\right)$ Hamiltonian constraint (H)
- $\mathrm{n} \mathrm{\gamma}: \mathbf{D}_{\mathrm{j}}\left(\mathbf{K}^{\mathrm{ij}}-\boldsymbol{\gamma}^{\mathrm{ij}} \mathbf{K}\right)=\mathbf{8 \pi} \mathbf{S}^{\mathrm{i}} \quad$ Momentum constraint (M)
$-\gamma \gamma: \partial_{\mathrm{t}} \mathrm{K}_{\mathrm{ij}}=\alpha\left({ }^{(3)} \mathrm{Rij}-2 \mathrm{~K}_{\mathrm{ik}} \mathrm{K}_{\mathrm{j}}^{\mathrm{k}}+\mathrm{KK}_{\mathrm{ij}}-\mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{j}} \alpha-\mathbf{8 \pi} \alpha\left(\mathrm{S}_{\mathrm{ij}}-\mathbf{1} / \mathbf{2} \mathrm{\gamma}_{\mathrm{ij}}(\mathrm{S}-\right.\right.$ م))

$$
+\beta^{k} \partial_{\mathrm{k}} K_{\mathrm{ij}}+\mathrm{K}_{\mathrm{ik}} \partial_{\mathrm{j}} \beta^{\mathrm{k}}+\mathrm{K}_{\mathrm{kj}} \partial_{\mathrm{i}} \beta^{\mathrm{k}}
$$

15. June ${ }^{201}$ Definition of $K_{i j}: \partial_{+} \boldsymbol{\gamma}_{\mathrm{ii}}=-2 \boldsymbol{\alpha} K_{\mathrm{ij}}+\mathrm{D}_{\mathrm{i}} \boldsymbol{\beta}_{\mathrm{i}}+\mathrm{D}_{\mathrm{i}} \boldsymbol{\beta}_{\text {i }}$

Numerical relativity 3/4

- Coordinate freedom by $\boldsymbol{\alpha}, \boldsymbol{\beta}$:
$-d s^{2}=-\alpha d t^{2}+\gamma_{i j}\left(d x_{i}+\beta_{i} d t\right)\left(d x^{j}+\beta^{j d t}\right)$
- So far so good...
- Solve constraints for $\mathbf{\gamma}_{\mathrm{ij}}, \mathbf{K}_{\mathrm{ij}}$
- Choose gauge $\boldsymbol{\alpha}, \boldsymbol{\beta}$
- Evolve $\boldsymbol{\partial}_{\mathrm{t}} \mathbf{\gamma}_{\mathrm{ij}}, \boldsymbol{\partial}_{\mathbf{t}} \mathbf{K}_{\mathrm{ij}}$
but...
(H) and (M) are of no known math type
Singularities have to be avoided, have to be chosen before solution

Not well posed equations!
Numerics will fail.

- Solution: conformal transformation: $\mathbf{\gamma}_{\mathrm{ij}}\left(\mathbf{x}^{\mathbf{i}}\right)=\boldsymbol{\phi}^{4}\left(\mathbf{x}^{\mathrm{i}}\right) \mathbf{\gamma}^{\sim}{ }_{\mathrm{ij}}\left(\mathbf{x}^{\mathrm{i}}\right)$
- $\phi\left(x^{i}\right)>0$; induces conformal geometry ($R^{\sim}, D_{i}^{\sim}, \ldots$)

Numerical relativity 4/4: conclusion

- Further steps:
- Conformal trafo yields elliptic equation for (H')
- Transverse (divergence free), traceless decomposition of $\mathbf{K}^{\mathrm{ij}}=\mathbf{A}^{\mathrm{ij}}+^{\mathbf{1 / 3}} \mathbf{\gamma}^{\mathrm{ij}} \mathbf{K}$ yields elliptic operator for $\mathbf{A}^{\mathrm{ij}}=\boldsymbol{\phi}^{-10} \tilde{\mathbf{A}}_{\mathrm{ij}}$
- Trafo of equations yields 4 coupled, elliptic $2^{\text {nd }}$ order PDEs, can be solved numerically!
- Solvable with boundary conditions (problematic for BH with spin >0.9)
- Evolution of initial data: e.g. BSSNOK equations
$-\partial_{t} \boldsymbol{\gamma}^{*}=\ldots ; \partial_{\mathrm{ij}} \tilde{A}_{\mathrm{ij}}=\ldots ; \partial_{\mathrm{t}} \phi=\ldots ; \partial_{\mathrm{t}} K=\ldots ; \partial_{\mathrm{t}} \mathrm{r}_{\mathrm{i}}=\ldots$ (see [1])
- Alternative formulations: CCZ4, generalized

The ADM equations

The ADM (Arnowitt, Deser, Misner) equations come from a reformulation of the Einstein equation using the ($3+1$) decomposition of spacetime.

$$
\begin{aligned}
\partial_{t} \gamma_{i j} & =-2 \alpha K_{i j}+\mathscr{L}_{\boldsymbol{\beta}} \gamma_{i j} \\
& =-2 \alpha K_{i j}+D_{i} \beta_{j}+D_{j} \beta_{i}
\end{aligned}
$$

$$
\begin{aligned}
\partial_{t} K_{i j}= & -D_{i} D_{j} \alpha+\beta^{k} \partial_{k} K_{i j}+K_{i k} \partial_{j} \beta^{k}+K_{k j} \partial_{i} \beta^{k} \\
& \left.+\alpha\left({ }^{(3)} R_{i j}+K K_{i j}-2 K_{i k} K_{j}^{k}\right)+4 \pi \alpha\left[\eta_{i j}(S-E)-2 S_{i j}\right)\right]
\end{aligned}
$$

Time evolving part of ADM

$$
D_{j}\left(K^{i j}-\gamma^{i j} K\right)=8 \pi S^{i}
$$

$$
{ }^{(3)} R+K^{2}-K_{i j} K^{i j}=16 \pi E
$$

Three dimensional covariant derivatiof ${ }^{2}$ mal projections of the energy-momentum tensor:

$$
D_{\nu}:=\gamma_{\nu}^{\mu} \nabla_{\mu}=\left(\delta_{\nu}^{\mu}+n_{\nu} n^{\mu}\right) \nabla_{\mu}
$$

Three dimensional Riemann tensor
${ }^{(3)} R_{\nu \kappa \sigma}^{\mu}=\partial_{\kappa}^{(3)} \Gamma_{\nu \sigma}^{\mu}-\partial_{\sigma}^{(3)} \Gamma_{\nu \kappa}^{\mu}+\Gamma_{\lambda \kappa}^{\mu} \Gamma_{\nu \sigma}^{\lambda}-{ }_{\nu}^{(3)} \Gamma_{\lambda \sigma}^{\mu}{ }_{\nu \kappa}^{(3)} \Gamma_{\nu}^{\lambda}$ ${ }^{(3)} \Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} \gamma^{\alpha \delta}\left(\partial_{\beta} \gamma_{\gamma \delta}+\partial_{\gamma} \gamma_{\delta \beta}-\partial_{\delta} \gamma_{\beta \gamma}\right)$

$$
S_{\mu \nu}:=\gamma^{\alpha}{ }_{\mu} \gamma^{\beta}{ }_{\nu} T_{\alpha \beta},
$$

$$
S_{\mu}:=-\gamma_{\mu}^{\alpha} n^{\beta} T_{\alpha \beta},
$$

$$
S:=S_{\mu}^{\mu},
$$

$$
E:=n^{\alpha} n^{\beta} T_{\alpha \beta},
$$

From ADM to BSSNOK

Unfortunately the ADM equations are only weakly hyperbolic (mixed derivatives in the three dimensional Ricci tensor) and therefore not "well posed". It can be shown that by using a conformal traceless transformation, the ADM equations can be written in a hyperbolic form. This reformulation of the ADM equations is known as the BSSNOK (Baumgarte, Shapiro, Shibata, Nakamuro, Oohara, Kojima) formulation of the Einstein equation. Most of the numerical codes use this (or even better the CCZ4) formulation.

The 3+1 Valencia Formulation of the Relativistic Hydrodynamic Equations

To guarantee that the numerical solution of the hydrodynamical equations (the conservation of rest mass and energymomentum) converge to the right solution, they need to be reformulated into a conservative formulation. Most of the numerical "hydro codes" use the $3+1$ Valencia formulation.

Finite difference methods

Discretisation of a hyperbolic initial value boundary problem.

High resolution shock capturing methods (HRSC methods are needed, when Riemann problems of discontinuous properties and shocks needs to be evolved accurately.)

Gauge Conditions

On each spatial hypersurface, four additional degrees of freedom need to be specified: A slicing condition for the lapse function and a spatial shift condition for the shift vector need to be formulated to close the system. In an optimal gauge condition, singularities should be avoided and numerical calculations should be less time consuming.
na-Massó family of slicing conditions:

$$
\partial_{t} \alpha-\beta^{k} \partial_{k} \alpha=-f(\alpha) \alpha^{2}\left(K-K_{0}\right)
$$

"1+log" slicing condition:

$$
f=2 / \alpha
$$

where $f(\alpha)>0$ and $K_{0}:=K(t=0)$
"Gamma-Driver" shift condition:

$$
\begin{aligned}
\partial_{t} \beta^{i}-\beta^{j} \partial_{j} \beta^{i} & =\frac{3}{4} B^{i} \\
\partial_{t} B^{i}-\beta^{j} \partial_{j} B^{i} & =\partial_{t} \tilde{\Gamma}^{i}-\beta^{j} \partial_{j} \tilde{\Gamma}^{i}-\eta B^{i}
\end{aligned}
$$

Twin stars

- Solutions for NS with two equilibria

FIG. 2. Stellar sequence of neutron stars and their twins as a function of central density. Both segments with positive slope correspond to stable configurations since their normal modes of vibration are found to be stable.

Teil III

Inhalte des Teil III:

- How to download and build (compile) the Einstein Toolkit
- How to run a test simulation (static_tov.par)
- Run and visualize (Mathematica or Python) one of the following problems
- Migration of an unstable neutron star to a stable configuration
- Collapse of an unstable neutron star to a black hole
- Collapse of a neutron star to a quark star (twin star collapse)

Software: Component Framework

© $\begin{gathered}\text { Domain } \\ \text { Scientists }\end{gathered}$ Relativists

Driver Thorns (Parallellsation)

MPI, Threads, New Programming Models

Einstein Toolkit

"The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Our cim is to provide the core computational tools that can enable new
 science, broaden our community, facilitate intercisciplinary research and take advantage of emerging petascale computers and advanced cyberinfrastructure."

* Consortium: 94 members, 49 sites, 14 countries
* Sustainable community model:
* 9 Maintainers from 6 sites: oversee technical developments. quality contral, verification and validation, distributions and relecises
* Whole consortium engaged in directions, support. development
* Open development meetings
* Governance model: still being discussed (looking at CIG. iPlant)

Das Einstein Toolkit

einstein

toolkit

The Einstein Toolkit

Gallery

About

The Einstein Toolkit is a community-driven software platform of core computational tools to advance and support research in relativistic astrophysics and gravitational physics.

About

Download

We provide a convenient method to get all of the Einstein Toolkit with just a few commands, and explain the whole process.

Download

Documentation

A lot of the documentation within the Einstein Toolkit is generated from comments in the source code, and more can be found on the Einstein Toolkit Wiki or other documents. We provide links to guides, tutorials and references.

Documentation

Contribute

The Einstein Toolkit would not exist without numerious contributions from its community. It is easy to learn how you can contribute as well.

Contribute

Das Einstein Toolkit: Download

einstein
 toolkit

Home About Download Documentation Help! Contribute Gallery

Download \& Requirements

The Einstein Toolkit is hosted on many different machines around the world. We provide a script called GetComponents to simplify downloading the toolkit. This page just describes how to download the toolkit - you may also be interested in the Tutorial for New Users which leads you through these steps and more on the Queen Bee supercomputer, or in a simpler tutorial for setup on a typical Linux box.

Users of the Einstein Toolkit are encouraged to register which also signs up for the users mailing list.

Main Toolkit

Citations

The development of production level scientific software, such as the components of the Einstein Toolkit, represents the academic output of researchers. These scientific contributions should be acknowledged and respected on par with those solely based in theory or experiment. Please review our Citation Policy.

Current release: Payne-Gaposchkin (released on December 16th, 2016)

This is the recommended version of the toolkit for most users. See the release notes for more information.
Note: OSX users cannot use the 'subversion' client shipped by Apple. In that case install subversion either from homebrew or macports.
Enter the directory on your machine in which you would like to download the ET (for example, your home directory), and type the commands listed below. This will create a directory called Cactus in which the components of the Einstein Toolkit are downloaded.
curl -kLO https://raw.githubusercontent.com/gridaphobe/CRL/ET_2016_11/GetComponents
chmod a+x GetComponents
./GetComponents --parallel https://bitbucket.org/einsteintoolkit/manifest/raw/ET_2016_11/einsteintoolkit.th

A tarball of the release is also available here, but using GetComponents is the preferred method to obtain the code. Use the tarball only if there is no way to use GetComponents (which should almost never be the case).

ET-Download auf dem Fuchs-Cluster

```
prakti1@login02.csc ~]$ cd ET-2016-11/
[praktil@login02.csc ET-2016-11]$ curl -kL0 https://raw.githubusercontent.com/gridaphobe/CRL/ET_2016_11/GetComponents
    % Total % Received % Xferd Average Speed Time Time Time Current
    900 99330 0 0 486k Opload Total Spent - Left Speed
prakti1@login02.csc ET-2016-11]$ chmod a+x GetComponents
Checking out module: par
    from repository: https://bitbucket.org/einsteintoolkit/einsteinexamples.git
        into: Cactus
```


[praktil@login02.csc ET-2016-11]\$ curl -kL0 https://raw.githubuse

 \% Total \% Received \% Xferd Average Speed Time Time Dload Upload Total Spent [prakti1@login02.csc ET-2016-11]\$ chmod a+x GetComponents [praktil@login02.csc ET-2016-11]\$./GetComponents --parallel httr
Checking out module: par
from repository: https://bitbucket.org/einsteintoolkit/eins
into: Cactus
into: Cactus

Checking out module: .clang-format
from repository: https://bitbucket.org/cactuscode/cactus.gj into: Cactus
as: flesh

```
Checking out module: CONTRIBUTORS
from repository: https://bitbucket.org/cactuscode/cactus.gj into: Cactus
as: flesh
```

Checking out module: COPYRIGHT
from repository: https://bitbucket.org/cactuscode/cactus.gj
into: Cactus
as: flesh
Checking out module: doc
from repository: https://bitbucket.org/cactuscode/cactus.gj
into: Cactus
as: flesh

Checking out module: lib

from repository: https://bitbucket.org/cactuscode/cactus.gj into: Cactus
as: flesh
[praktil@login02.csc ET-2016-11]\$./GetComponents --parallel https://bitbucket.org/einsteintoolkit/manifest/raw/ET_2016_11/einsteintoolkit.th
iDependencies1
'cactuscode/cactustest.git

Checking out module: CactusTest/TestFortranDependencies2
from repository: https://bitbucket.org/cactuscode/cactustest.git into: Cactus/arrangements

Checking out module: EinsteinAnalysis/QuasiLocalMeasures
from repository: https://bitbucket.org/einsteintoolkit/einsteinanalysis.git into: Cactus/arrangements

Checking out module: EinsteinInitialData/IDAxiOddBrillBH
from repository: https://bitbucket.org/einsteintoolkit/einsteininitialdata.git into: Cactus/arrangements

Checking out module: PITTNullCode/SphericalHarmonicRecon
from repository: https://bitbucket.org/einsteintoolkit/pittnullcode.git into: Cactus/arrangements

Checking out module: PITTNullCode/SphericalHarmonicDecomp
from repository: https://bitbucket.org/einsteintoolkit/pittnullcode.git into: Cactus/arrangements

Checking out module: EinsteinExact/ModifiedSchwarzschildBL
from repository: https://github.com/barrywardell/EinsteinExact.git into: Cactus/arrangements

Checking out module: EinsteinInitialData/Hydro InitExcision
from repository: https://bitbucket.org/einsteintoolkit/einsteininitialdata.git into: Cactus/arrangements

Checking out module: EinsteinUtils/SetMask_SphericalSurface
from repository: https://bitbucket.org/einsteintoolkit/einsteinutils.git into: Cactus/arrangements

Checking out module: PITTNullCode/SphericalHarmonicReconGen
from repository: https://bitbucket.org/einsteintoolkit/pittnullcode.git into: Cactus/arrangements

Checking out module: EinsteinInitialData/IDConstraintViolate
from repository: https://bitbucket.org/einsteintoolkit/einsteininitialdata.git

Das Einstein Toolkit: Setup mit SimFactory

[praktil@login02.csc Cactus]\$./simfactory/bin/sim setup --machine fuchs

Here we will define some necessary Simulation Factory defaults.

Determining local machine name: login02.cm.cluster
Creating machine login02.cm.cluster from generic: machine login02.cm.cluster [/home/agmisc/praktil/ET-2016-11/Cactus/repos/simfactory2/mdb/macl enter value for key user [praktil]:
enter value for key email [praktil]:
enter value for key allocation []:
enter value for key sourcebasedir (the parent directory containing the Cactus sourcetree) [/home/agmisc/praktil/ET-2016-11]: enter value for key basedir (the location of simfactory simulations) [/home/agmisc/praktil/simulations]:
would you like to enter key/value pairs for a specific machine? [Y/N*]:
SUMMARY-
[default]
= praktil
= praktil
allocation
= /home/agmisc/praktil/ET-2016-11
basedir
= /home/agmisc/praktil/simulations
--END SUMMARY
Save contents [Y*/N]:
Contents successfully written to /home/agmisc/praktil/ET-2016-11/Cactus/repos/simfactory2/etc/defs.local.ini [praktil@login02.csc Cactus]\$

Das Einstein Toolkit: Kompilierung

[praktil@login02.csc Cactus]\$./simfactory/bin/sim build et --thornlist ./manifest/einsteintoolkit.th --machine fuchs Using configuration: et
Reconfiguring et
Writing configuration to: /home/agmisc/praktil/ET-2016-11/Cactus/configs/et/OptionList Cactus - version: 4.2.3
Reconfiguring et.
Using configuration options from configure line
Setting fds to $4,5-\mathrm{j}--1$
End of options from configure line
Adding configuration options from '/home/agmisc/praktil/ET-2016-11/Cactus/configs/et/0ptionList'...
Setting VERSION to '2015-05-16'
Setting CPP to 'cpp'
Setting FPP to 'cpp'
Setting CC to '/cm/shared/apps/intel/composer_xe/2013_sp1.3.174/composer_xe_2013_sp1.3.174/bin/intel64/icc'
Setting CXX to '/cm/shared/apps/intel/composer_xe/2013_sp1.3.174/composer_xe_2013_spl.3.174/bin/intel64/icpc'
Setting F77 to '/cm/shared/apps/intel/composer_xe/2013_sp1.3.174/composer_xe_2013_sp1.3.174/bin/intel64/ifort'
Setting F90 to '/cm/shared/apps/intel/composer_xe/2013_sp1.3.174/composer_xe_2013_sp1.3.174/bin/intel64/ifort'
Setting CPPFLAGS to '-DCCTK DISABLE_OMP_COLLAPSE -DCCTK DISABLE RESTRICT'
Setting FPPFLAGS to '-DCCTK_DISABLE_OMP_COLLAPSE -traditional -DCCTK DISABLE_RESTRICT'
Setting CFLAGS to '-g -traceback -msse3 -align -std=c99 -U_STRICT_ANSI_'
Setting CXXFLAGS to ' -g -traceback -msse3 -align -std=c++11-D_builtin_fmaxf=fmaxf -D_builtin_fmaxl=fmaxl -D_builtin_fmin
Setting F77FLAGS to '-g -traceback -msse3 -align -pad -safe-cray-ptr'
Setting F90FLAGS to '-g -traceback -msse3 -align -pad -safe-cray-ptr'
Setting C_LINE DIRECTIVES to 'yes'
Setting F_LINE DIRECTIVES to 'yes'
Setting LDFLAGS to '-Wl,--export-dynamic -Wl,-rpath,/cm/shared/apps/intel/composer_xe/2013_spl.3.174/composer_xe_2013_sp1.3. th,/cm/shared/apps/intel/composer_xe/2013_spl.3.174/composer_xe_2013_sp1.3.174/ipp/lib/intel64 -Wl, -rpath,/cm/shared/apps/intel xe_2013_spl.3.174/tbb/lib/intel64/gcc4.4

Setting BEGIN WHOLE ARCHIVE FLAGS to '-wl, --whole-archive'
Setting END WHOLE ARCHIVE FLAGS to '-Wl,--no-whole-archive'
Setting VECTORISE to 'yes'
Setting VECTORISE_ALIGNED_ARRAYS to 'no'
Setting VECTORISE-INLINE to 'no'
Setting VECTORISE_STREAMING_STORES to 'no'
Setting DEBUG to 'no'
Setting CPP_debug FLAGS to '-DCARPET debug'
Setting FPP_DEBUG_FLAGS to '-DCARPET_DEBUG'
Setting C DEBUG_FLAGS to '-00 -debug all
Setting CXXX DEBUG_FLAGS to '-00 -debug all'

Das Einstein Toolkit: Weitere Informationen

Welcome

The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Our aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of emerging petascale computers and advanced cyberinfrastructure.

Please read our pages about the Einstein Toolkit, its governance, and how to get started with the toolkit for more information.

Download

November 2014: We are pleased to announce the tenth release (code name "Herschel") of the Einstein Toolkit, an open, community developed soffware infrastructure for relativistic astrophysics.
https://www.youtube.com/watch?v=EO4d32ch6OI https://www.youtube.com/watch?v=p5bq2iUO3DE https://www.youtube.com/watch?v=MNpyd_o0MT4 https://www.youtube.com/watch?v=Qg6PwRI2uS8 https://www.youtube.com/watch?v=ZW3aV7U-aik

Equation of State examples

FIG. 6. FSU2Hnew and Blaschke equation of states density to pressure and speed of sound profile.

FIG. 7. Comparison of mass to radius relation of different equations of state.

FSU2H Twin star oscillations

References

[1] „Binary neutron-star mergers: a review of Einstein's richest Iaboratory", Luca Baiotti \& Luciano Rezzolla 2016, arxiv.org/abs/1607.03540
[2] „Non-Identical Neutron Star Twins", Norman K. Glendenning et al. 1998, arxiv.org/abs/astro-ph/9807155
[3] „Internal Constitution of Neutron and Strange Stars", Norman K. Glendenning 1997, arxiv.org/abs/astro-ph/9706236v2
[4] „Equation of State for Nucleonic and Hyperonic Neutron Stars with Mass and Radius Constraints", Laura Tolos et al. 2016, arxiv.org/abs/1610.00919
[5] „The Magnetosphere of Oscillating Neutron Stars in General Relativity",
Ernazar B. Abdikamalov et al. 2009, arXiv:0809.1191v2

