Exercise 1: Fermion propagator ($4+2=6$ points)

Consider free Dirac fermions,

$$
\begin{equation*}
S_{0}[\bar{\psi}, \psi]=\int \bar{\psi}\left(\mathrm{i} \gamma^{\mu} \partial_{\mu}-m\right) \psi d^{4} x, \tag{1}
\end{equation*}
$$

with generating functional

$$
\begin{equation*}
Z[\bar{\eta}, \eta]=\frac{1}{Z} \int e^{\mathrm{i} S_{0}[\bar{\psi}, \psi]+\mathrm{i} \int(\bar{\eta}(x) \psi(x)+\bar{\psi}(x) \eta(x)) d^{4} x} D \psi D \bar{\psi} . \tag{2}
\end{equation*}
$$

i) Explicitly solve the integral and show, that the generating functional can be given as

$$
\begin{equation*}
Z[\bar{\eta}, \eta]=e^{-\int \bar{\eta}(x) S_{F}(x, y) \eta(y) d^{4} x d^{4} y} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{F}(x, y)=\int \frac{\mathrm{i}}{\not k-m+\mathrm{i} \epsilon} e^{-\mathrm{i} k(x-y)} \frac{d^{4} k}{(2 \pi)^{4}} . \tag{4}
\end{equation*}
$$

ii) Show, that S_{F} is indeed the Feynman propagator, by calculating

$$
\begin{equation*}
\langle 0| T(\psi(x) \bar{\psi}(y))|0\rangle=\left.\left(-\mathrm{i} \frac{\delta}{\delta \bar{\eta}(x)}\right)\left(\mathrm{i} \frac{\delta}{\delta \eta(y)}\right) Z[\bar{\eta}, \eta]\right|_{\bar{\eta}=\eta=0} . \tag{5}
\end{equation*}
$$

Exercise 2: Yukawa theory ($2+4=6$ points)

Consider the following Lagrangian for a theory with interacting real scalar fields ϕ and Dirac fermion fields ψ, referred to as a Yukawa theory

$$
\begin{equation*}
\mathcal{L}[\phi, \psi, \bar{\psi}]=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi+\bar{\psi}\left(\mathrm{i} \not \partial-m_{\psi}\right) \psi-\frac{1}{2} m_{\phi}^{2} \phi^{2}+g \bar{\psi} \psi \phi . \tag{6}
\end{equation*}
$$

i) Give the generating functional of the theory $Z[J, \eta, \bar{\eta}]$ and express it as a function of the generating functional of the non-interacting theory $Z_{0}[J, \eta, \bar{\eta}]$, as you have done it in the lecture for scalar ϕ^{4} theory.
ii) Calculate the connected Green's function to order $\mathcal{O}\left(g^{2}\right)$

$$
\begin{equation*}
\langle\Omega| T(\psi(x) \bar{\psi}(y))|\Omega\rangle, \tag{7}
\end{equation*}
$$

using the generating functional.

Exercise 3: Fadeev-Popov method ($2+4+2=8$ points)
Let us solve the 2-dim. Gaussian integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y \tag{8}
\end{equation*}
$$

in a Fadeev-Popov inspired way.
i) Argue, that the integral is invariant under rotation

$$
\binom{x^{g}}{y^{g}}=g\binom{x}{y}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \tag{9}\\
\sin \phi & \cos \phi
\end{array}\right)\binom{x}{y}
$$

where g is a $S O(2)$ matrix.
ii) Use the relation

$$
\begin{equation*}
1=\Delta_{F P}(x, y) \int \delta\left(F\left(x^{g}, y^{g}\right)\right) d g \tag{10}
\end{equation*}
$$

to calculate $\Delta_{F P}^{-1}(x, y)$, using the following ,,gauge"

$$
\begin{equation*}
F\left(x^{g}, y^{g}\right)=y^{g}=x \sin \phi+y \cos \phi . \tag{11}
\end{equation*}
$$

Hint: Use the following relation to simplify the δ-function

$$
\begin{equation*}
\delta(f(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|}, \tag{12}
\end{equation*}
$$

where x_{i} are the roots of $f\left(x_{i}\right)=0$.
iii) Use your results to show that

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y=\int d g \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta_{F P}(x, y) \delta(F(x, y)=y) e^{-x^{2}-y^{2}} d x d y=\pi \tag{13}
\end{equation*}
$$

where $\int d g$ is the volume of the gauge orbit.

