Exercise 1: Connected functions ($2+3+3=8$ points)
Consider an interacting, scalar quantum field theory with generating functional $Z[J]$. Using the generating functional for the connected Green's functions $W[J]=\log Z[J]$, show the following relations $(\langle\ldots\rangle=\langle\Omega| T(\ldots)|\Omega\rangle)$
i) For the one-point function

$$
\begin{equation*}
\left\langle\phi\left(x_{1}\right)\right\rangle=\left\langle\phi\left(x_{1}\right)\right\rangle_{c}=\langle\phi\rangle . \tag{1}
\end{equation*}
$$

ii) For the two-point function

$$
\begin{equation*}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle=\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle_{c}+\langle\phi\rangle^{2} . \tag{2}
\end{equation*}
$$

iii) For the three-point function

$$
\begin{align*}
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right\rangle= & \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right\rangle_{c} \tag{3}\\
& +\langle\phi\rangle\left(\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle_{c}+\left\langle\phi\left(x_{2}\right) \phi\left(x_{3}\right)\right\rangle_{c}+\left\langle\phi\left(x_{1}\right) \phi\left(x_{3}\right)\right\rangle_{c}\right)+\langle\phi\rangle^{3} .
\end{align*}
$$

Exercise 2: Dyson-Schwinger equation ($4+4=8$ points)
Consider an euclidean, real scalar field theory with a $\mathcal{L}_{\text {int }}[\phi]=\frac{\lambda}{4!} \phi^{4}$ interaction. In the lecture you derived the Dyson-Schwinger equation for a scalar field theory with generating functional $Z[J]$,

$$
\begin{equation*}
\left(-\frac{\delta S[\phi]}{\delta \phi(x)}\left[\frac{\delta}{\delta J}\right]+J(x)\right) Z[J]=0 \tag{4}
\end{equation*}
$$

Use this expression to derive exact equations that are satisfied
i) by the two- and four-point (with three points identified) functions.
ii) by the four- and six-point (with three points identified) functions.

Exercise 3: Connected Green's functions and the effective action (4 points)

In the lecture you have found the following relations between amputated Green's functions G_{n}^{a} and the proper vertices $\Gamma^{(n)}$, for a general action $S[\phi]$

$$
\begin{align*}
\Gamma^{(1)}(x)= & 0 \tag{5}\\
\Gamma^{(2)}\left(x_{1}, x_{2}\right)= & S\left(x_{1}, x_{2}\right)=\left[G_{2}^{c}\left(x_{1}, x_{2}\right)\right]^{-1} \\
\Gamma^{(3)}\left(x_{1}, x_{2}, x_{3}\right)= & -G_{3}^{a}\left(x_{1}, x_{2}, x_{3}\right) \\
\Gamma^{(4)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & -G_{4}^{a}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+\int G_{3}^{a}\left(x_{1}, x_{2}, y\right) G_{2}^{c}(y, z) G_{3}^{a}\left(x_{3}, x_{4}, z\right) d^{4} y d^{4} z \\
& +2 \text { permutations. }
\end{align*}
$$

Identify the permutations and use the relations to give the connected Green's functions

$$
\begin{equation*}
G_{3}^{c}\left(x_{1}, x_{2}, x_{3}\right) \quad \text { and } \quad G_{4}^{c}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \tag{6}
\end{equation*}
$$

as functions of $\Gamma^{(i)}$.
What happens in the special case of ϕ^{4}-theory?

