Exercise 1: Zassenhaus Formula ($5+5=10$ points)
Consider two operators A and B, with $[A,[A, B]]=[B,[A, B]]=0$.
i) Derive the Baker-Campbell-Hausdorff formula

$$
\begin{equation*}
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} \tag{1}
\end{equation*}
$$

For this purpose show

$$
\begin{equation*}
\left[A^{n}, B\right]=n A^{n-1}[A, B] \tag{2}
\end{equation*}
$$

first and then derive the following differential equation by definining $f(t)=e^{t A} e^{t B}$

$$
\begin{equation*}
\frac{d f}{d t}=(A+B+t[A, B]) f(t) . \tag{3}
\end{equation*}
$$

Find another solution of this differential equation.
Hint: Calculating the commutator $\left[e^{t A}, B\right]$ will be of great use.
ii) If the relations $[A,[A, B]]=[B,[A, B]]=0$ do not hold, the formula can be extended to general cases. This extension is known as Zassenhaus formula and given by

$$
\begin{equation*}
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} e^{-\frac{1}{6}(2[B,[B, A]]+[A,[B, A]])} e^{Z_{3}} e^{Z_{4}} \ldots \tag{4}
\end{equation*}
$$

where Z_{3}, Z_{4}, \ldots contain higher powers of the operators A and B. Use this formula to show the following relation for the Hamilton operator $H=H_{0}+V$

$$
\begin{equation*}
e^{-\mathrm{i} \epsilon H}=e^{-\mathrm{i} \epsilon\left(H_{0}+V\right)}=e^{-\mathrm{i} \epsilon V / 2} e^{-\mathrm{i} \epsilon H_{0}} e^{-\mathrm{i} \epsilon V / 2}+\mathcal{O}\left(\epsilon^{3}\right), \tag{5}
\end{equation*}
$$

with small parameter $\epsilon>0$.

