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Exercise 1: Differential cross section

In the lecture you have discussed the differential cross section of two incoming partic-
les with four-momenta p; and ps. The differential cross section for 2-2 scattering (two
incoming and two outgoing particles) is given as
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Let us consider the incoming particles would carry the same mass m and the outgoing
ones the mass M. Show that the obtained cross section of 2-2 scattering leads to
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in the center-of-mass system.

Hint: We define the total energy of the collision in the center-of-mass system Ejo = /.

(2)

Exercise 2: Wick’s theorem

In the lecture you showed Wick’s theorem for the time ordered product of two field
operators

T (B1(00)1(x2)) = du(a)du(wa) : + (0| T (br(w1)d(w2)) [0) (3)
Use this result to prove that
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Hint: You will need to decompose the fields at some point, as you have done it in the lecture,

writing ggl = ngS;r + QASI_. Also show it for 29 > 3 > 23 at first and discuss afterwards that
it holds in all cases.
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Exercise 3: Feynman propagator of real scalar field theory

In the lecture you calculated the Feynman propagator of real scalar field theory
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i) Prove that the propagator is given as

d3p

Ap(x —y) = / (€_ip(x_y)9(tx —t,) + eip(x_y)e(ty - tx)) m’ (6)

when performing part of the integration.

Hint: Find the poles of the denominator and use the residue theorem. You will have

to rescale € = —=5—.
2E(p)

ii) We want to show that the Feynman propagator is the Green function of the Klein-
Gordon operator

(00" + ) A — y) = (0,0" +md) (0| T ($1(2)3:(v) ) 10) = ~i6Y (& — ). (7

Prove that this is indeed the case by letting the operator (9,0" +m?) act on expec-
tation value of the time ordered product.

Hint: You will need the derivative of the delta distribution, that is only defined in a
distributional sense as

(500t = 1)) érlo) = =00t — ) 5. ®



