Exercise 1: Unequal time commutator

Consider a real quantized scalar field $\hat{\phi}(x)$ with conjugate field $\hat{\pi}(y)$, where $x^{0} \neq y^{0}$.
Show that the unequal time commutator is given as

$$
\begin{equation*}
[\hat{\phi}(x), \hat{\pi}(y)]=\frac{\mathrm{i}}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left(e^{\mathrm{i} p \cdot(x-y)}+e^{-\mathrm{i} p \cdot(x-y)}\right) \tag{1}
\end{equation*}
$$

by using the Fourier transform of $\hat{\phi}$ and $\hat{\pi}$, familiar from the lecture.
Show that this reduces to the equal time commutator, when choosing $x^{0}=y^{0}=t$.

Exercise 2: Occupation number

Prove the following relation of the number operator \hat{N}

$$
\begin{equation*}
\hat{N}\left|\mathbf{k}^{(1)}, \mathbf{k}^{(2)}, \ldots, \mathbf{k}^{(n)}\right\rangle=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E(p)} \hat{a}^{\dagger}(\mathbf{p}) \hat{a}(\mathbf{p})\left|\mathbf{k}^{(1)}, \mathbf{k}^{(2)}, \ldots, \mathbf{k}^{(n)}\right\rangle=n\left|\mathbf{k}^{(1)}, \mathbf{k}^{(2)}, \ldots, \mathbf{k}^{(n)}\right\rangle \tag{2}
\end{equation*}
$$

Hint: Use induction.

Exercise 3: The four momentum operator of electrodynamics

In the lecture you have discussed the quantized four potential of electrodynamics

$$
\begin{equation*}
\hat{A}^{\mu}(x)=\int \sum_{\lambda=1}^{2} \epsilon_{\lambda}^{\mu}(\mathbf{p})\left(\hat{a}_{\lambda}(\mathbf{p}) e^{-\mathrm{i} p x}+\hat{a}_{\lambda}^{\dagger}(\mathbf{p}) e^{\mathrm{i} p x}\right) \frac{d^{3} p}{(2 \pi)^{3} 2 E(\mathbf{p})} \tag{3}
\end{equation*}
$$

With the polarization vectors $\epsilon_{\lambda}^{\mu}(\mathbf{p})$ and dispersion relation $\omega=E(\mathbf{p})=|\mathbf{p}|$. Furthermore let us consider radiation gauge

$$
\begin{equation*}
\hat{A}^{0}=0, \quad \nabla \hat{\mathbf{A}}=0 \tag{4}
\end{equation*}
$$

making it possible to choose two real linear independent polarization vectors that are normalizable

$$
\begin{equation*}
\epsilon_{\lambda}^{\mu} \epsilon_{\mu, \lambda^{\prime}}=\epsilon_{\lambda}^{i} \epsilon_{i, \lambda^{\prime}}=-\delta_{\lambda \lambda^{\prime}} . \tag{5}
\end{equation*}
$$

i) Calculate the normal ordered zero component of the four momentum operator

$$
\begin{equation*}
\hat{P}^{0}=\int \hat{\mathcal{H}} d^{3} x=\frac{1}{2} \int\left(|\hat{\mathbf{E}}|^{2}+|\hat{\mathbf{B}}|^{2}\right) d^{3} x \tag{6}
\end{equation*}
$$

Hint: Use $|\hat{\mathbf{E}}|^{2}=\hat{F}^{i 0} \hat{F}_{0 i}$ and $|\hat{\mathbf{B}}|^{2}=\frac{1}{2} \hat{F}^{i j} \hat{F}_{i j}$.
ii) An analogous calculation can be done for the spatial components of the four momentum operator, leading to

$$
\begin{equation*}
\hat{P}^{i}=\int(\hat{\mathbf{E}} \times \hat{\mathbf{B}})^{i} d^{3} x=\frac{1}{2} \int p^{i} \sum_{\lambda=1}^{2} \hat{a}_{\lambda}^{\dagger}(\mathbf{p}) \hat{a}_{\lambda}(\mathbf{p}) \frac{d^{3} p}{(2 \pi)^{3} 2 E(\mathbf{p})} \tag{7}
\end{equation*}
$$

making it possible to give a normal ordered expression of the complete four momentum operator

$$
\begin{equation*}
\hat{P}^{\mu}=\int \frac{p^{\mu}}{E(\mathbf{p})} \sum_{\lambda=1}^{2} \hat{a}_{\lambda}^{\dagger}(\mathbf{p}) \hat{a}_{\lambda}(\mathbf{p}) \frac{d^{3} p}{2(2 \pi)^{3}} . \tag{8}
\end{equation*}
$$

Prove that the first excited Fock state is an eigenstate of the four momentum operator

$$
\begin{equation*}
\hat{P}^{\mu}\left|a_{\lambda}(\mathbf{p})\right\rangle=\hat{P}^{\mu} \hat{a}_{\lambda}^{\dagger}(\mathbf{p})|0\rangle=p^{\mu}\left|a_{\lambda}(\mathbf{p})\right\rangle . \tag{9}
\end{equation*}
$$

