Exercise 1: Parity and charge conjugation

Recall the following bilinear covariants from the lecture

$$
\begin{equation*}
\bar{\psi} \psi, \quad \bar{\psi} \gamma^{5} \psi, \quad \bar{\psi} \gamma^{\mu} \psi, \quad \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \tag{1}
\end{equation*}
$$

i) In the lecture you discussed the parity transformation

$$
\begin{equation*}
P:(t, \mathbf{x}) \rightarrow(t,-\mathbf{x}) \tag{2}
\end{equation*}
$$

and showed that the parity transformation of a Dirac spinor ψ is given as

$$
\begin{equation*}
\psi \rightarrow \psi^{P}=\gamma^{0} \psi \tag{3}
\end{equation*}
$$

Discuss the transformation properties of the bilinear covariants under parity transformation.
Hint: Split the vectorial bilinear covariants into $\bar{\psi} \gamma^{0} \psi$ and $\bar{\psi} \gamma^{i} \psi$ and discuss the parity transformation separately.
ii) We consider a charged particle with mass m and charge q moving in an external electromagentic field. In the lecture you discussed a relativistic description of such a system, given by the following Dirac equation

$$
\begin{equation*}
\left[\mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\mathrm{i} q A_{\mu}\right)-m\right] \psi(x)=0 \tag{4}
\end{equation*}
$$

Determine the corresponding Dirac equation for the charge conjugate spinor

$$
\begin{equation*}
C: \quad \psi \rightarrow \psi^{C}=\mathrm{i} \gamma^{2} \gamma^{0} \bar{\psi}^{T}=\mathrm{i} \gamma^{2} \psi^{*} \tag{5}
\end{equation*}
$$

as you have done it in the lecture in case of the free Dirac equation. Comment on the name „charge conjugation".

Exercise 2: Solution of the Dirac equation

In the lecture you showed that the general solution of the Dirac equation

$$
\begin{equation*}
\left[\mathrm{i} \gamma^{\mu} \partial_{\mu}-m\right] \psi(x)=0, \tag{6}
\end{equation*}
$$

is given by the following Dirac spinor

$$
\begin{equation*}
\psi(x)=\int \sum_{r=1,2}\left(b_{r}(\mathbf{k}) u_{r}(\mathbf{k}) e^{-\mathrm{i} k x}+d_{r}^{*}(\mathbf{k}) v_{r}(\mathbf{k}) e^{\mathrm{i} k x}\right) \frac{d^{3} k}{(2 \pi)^{3} 2 E(\mathbf{k})}, \tag{7}
\end{equation*}
$$

with $b_{r}(\mathbf{k}), d_{r}(\mathbf{k}) \in \mathbb{C}$ complex numbers. The $u_{r}(\mathbf{k}), v_{r}(\mathbf{k})$ are referred to as basis spinors.
i) Show that the basis spinors are orthogonal

$$
\begin{align*}
& \bar{u}_{r}(\mathbf{k}) u_{s}(\mathbf{k})=-\bar{v}_{r}(\mathbf{k}) v_{s}(\mathbf{k})=2 m \delta_{r s} \tag{8}\\
& \bar{u}_{r}(\mathbf{k}) v_{s}(\mathbf{k})=\bar{v}_{r}(\mathbf{k}) u_{s}(\mathbf{k})=0 \tag{9}
\end{align*}
$$

ii) Show the completeness relations

$$
\begin{align*}
& \sum_{s=1,2} u_{s, \alpha}(\mathbf{k}) \bar{u}_{s, \beta}(\mathbf{k})=(\not k+m)_{\alpha \beta}, \tag{10}\\
& \sum_{s=1,2} v_{s, \alpha}(\mathbf{k}) \bar{v}_{s, \beta}(\mathbf{k})=(\not k-m)_{\alpha \beta} . \tag{11}
\end{align*}
$$

iii) We define the following two operators

$$
\begin{equation*}
\Lambda_{\alpha \beta}^{+}(\mathbf{k}):=\frac{1}{2 m} \sum_{s=1,2} u_{s, \alpha}(\mathbf{k}) \bar{u}_{s, \beta}(\mathbf{k}), \quad \Lambda_{\alpha \beta}^{-}(\mathbf{k}):=-\frac{1}{2 m} \sum_{s=1,2} v_{s, \alpha}(\mathbf{k}) \bar{v}_{s, \beta}(\mathbf{k}) \tag{12}
\end{equation*}
$$

Show that they are orthogonal projection operators $\left(\Lambda^{ \pm}\right)^{2}=\Lambda^{ \pm}, \Lambda^{+} \Lambda^{-}=0$ and let them act on the complete solution of the Dirac equation $\psi(x)$. What do they project out?

