Exercise 1: Dirac and Klein-Gordon equation

Let ψ be a Dirac spinor solving the Dirac equation

$$
\begin{equation*}
\left[\mathrm{i} \gamma^{\mu} \partial_{\mu}-m\right] \psi(x)=0 . \tag{1}
\end{equation*}
$$

Show that it is also a solution of the Klein-Gordon equation

$$
\begin{equation*}
\left[\partial_{\mu} \partial^{\mu}+m^{2}\right] \psi(x)=0 . \tag{2}
\end{equation*}
$$

Exercise 2: Bilinear covariants I

i) First show that

$$
\begin{equation*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \tag{3}
\end{equation*}
$$

and use your results to show that

$$
\begin{equation*}
\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0} \tag{4}
\end{equation*}
$$

ii) In the lecture you found the following Lorentz transformation of a Dirac spinor ψ

$$
\begin{equation*}
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x), \quad S(\Lambda)=e^{-\frac{i}{4} \omega^{\mu \nu} \sigma_{\mu \nu}} \tag{5}
\end{equation*}
$$

with $\sigma_{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]$.
Furthermore you have shown that $\bar{\psi} \psi$ is a Lorentz scalar, therefore the inverse transformation is given by

$$
\begin{equation*}
\bar{\psi}(x) \rightarrow \bar{\psi}^{\prime}\left(x^{\prime}\right) S^{-1}(\Lambda), \quad S^{-1}(\Lambda)=e^{\frac{i}{4} \omega^{\mu \nu} \sigma_{\mu \nu}} . \tag{6}
\end{equation*}
$$

Show that $S^{-1}(\Lambda)$ can also be written as

$$
\begin{equation*}
S^{-1}(\Lambda)=\left(\gamma^{0} S(\Lambda) \gamma^{0}\right)^{\dagger} \tag{7}
\end{equation*}
$$

(instead of $S^{-1}(\Lambda)=S^{\dagger}(\Lambda)$ as one would expect naively).
Hint: Use the result of i)

Exercise 3: Bilinear covariants II

Recall the infinitesimal representation of the Lorentz transformation

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\delta \omega_{\nu}^{\mu} \tag{8}
\end{equation*}
$$

and the Lorentz transforamtion of a Spinor

$$
\begin{equation*}
S(\Lambda)=1-\frac{\mathrm{i}}{4} \sigma_{\mu \nu} \delta \omega^{\mu \nu}+o\left(\delta \omega^{2}\right), \quad \sigma_{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right] \tag{9}
\end{equation*}
$$

i) Using these transformations, show that the equation

$$
\begin{equation*}
S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda)=\Lambda_{\nu}^{\mu} \gamma^{\nu} \tag{10}
\end{equation*}
$$

familiar from the lecture, is satisfied up to first order in $\delta \omega$.
ii) In the lecture you showed that $\bar{\psi} \psi$ transforms as a Lorentz scalar and $\bar{\psi} \gamma^{\mu} \psi$ transforms as a Lorentz vector. Furthermore you introduced an additional gamma matrix $\gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ with the transformation property

$$
\begin{equation*}
S^{-1}(\Lambda) \gamma^{5} S(\Lambda)=\operatorname{det}(\Lambda) \gamma^{5} \tag{11}
\end{equation*}
$$

Prove the behaviour under Lorentz transformation of the following bilinear covariants

$$
\begin{align*}
\bar{\psi} \gamma^{5} \psi & \rightarrow \operatorname{det}(\Lambda) \bar{\psi} \gamma^{5} \psi & & \text { pseudoscalar } \tag{12}\\
\bar{\psi} \gamma^{\mu} \gamma^{5} \psi & \rightarrow \operatorname{det}(\Lambda) \Lambda_{\nu}^{\mu} \bar{\psi} \gamma^{\nu} \gamma^{5} \psi & & \text { axial vector } \tag{13}\\
\bar{\psi} \sigma^{\mu \nu} \psi & \rightarrow \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} \bar{\psi} \sigma^{\alpha \beta} \psi & & \text { antisymmetric tensor } \tag{14}
\end{align*}
$$

Hint: Equation (10) will be very useful.

Exercise 4: Continuity equation in relativistic quantum mechanics II

Let the Dirac spinor ψ be a solution of the Dirac equation

$$
\begin{equation*}
\left[\mathrm{i} \gamma^{\mu} \partial_{\mu}-m\right] \psi(x)=0 \tag{15}
\end{equation*}
$$

Show that the current

$$
\begin{equation*}
j^{\mu}(x)=\bar{\psi} \gamma^{\mu} \psi \tag{16}
\end{equation*}
$$

satisfies a continuity equation

$$
\begin{equation*}
\partial_{\mu} j^{\mu}(x)=0 \tag{17}
\end{equation*}
$$

Discuss wether $j^{0}=\rho$ is positive definite in the case of the Dirac equation.

