Exercise 1: QCD running coupling

In the lecture you discussed that $\alpha_{s}=\frac{g^{2}}{4 \pi}$, with g the strong coupling of QCD, is a function of energy. This running coupling is given by the following differential equation,

$$
\begin{equation*}
Q^{2} \frac{d \alpha_{s}}{d Q^{2}}=-\beta_{0} \alpha_{s}^{2}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right) \tag{1}
\end{equation*}
$$

where Q^{2} is the energy scale of the system and β_{0} is given as

$$
\begin{equation*}
\beta_{0}=\frac{11 N_{c}-2 N_{f}}{12 \pi} \tag{2}
\end{equation*}
$$

with N_{c} colors and N_{f} flavors.
i) Solve the differential equation up to first order, ignoring all terms $\mathcal{O}\left(\alpha_{s}^{3}\right)$ and higher.
ii) The value for α_{s} at the energy scale of the mass of the Z-boson, $Q=M_{Z}=91.1 \mathrm{GeV}$ is

$$
\begin{equation*}
\alpha_{s}\left(Q^{2}=M_{Z}^{2}\right)=0.12 . \tag{3}
\end{equation*}
$$

Use $Q=10 \mathrm{GeV}$ with $N_{f}=5$ flavors and calculate the value of α_{s}.

Exercise 2: Fermion mass generation

Consider the following theory for real scalar fields and fermions

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)+\bar{\psi} \mathrm{i} \gamma^{\mu} \partial_{\mu} \psi-g \phi \bar{\psi} \psi, \tag{4}
\end{equation*}
$$

with the following potential

$$
\begin{equation*}
V(\phi)=\frac{\lambda}{4!}\left(\phi^{2}-v^{2}\right)^{2} . \tag{5}
\end{equation*}
$$

i) Sketch the potential $V(\phi)$ of the scalar field. What is the vacuum expectation value $\langle\phi\rangle=\langle 0| \phi|0\rangle$?
ii) Reparametrise the scalar field by its fluctuations around the expectation value $\phi=\langle\phi\rangle+\chi$ and express \mathcal{L} in terms of the field variables ψ and χ.
iii) Identify the particle masses m_{ψ} and m_{ξ} and the basic vertices for all interaction terms in this theory, without specifying the Feynman rules. Is there a Goldstone boson? Discuss without calculations what changes in case of a complex scalar field.

Prof. Dr. Owe Philipsen

Bonus

Exercise 3: Electroweak theory

Consider the following terms of the electroweak Lagrangian for the first generation of leptons

$$
\begin{equation*}
\mathcal{L}_{f}=\bar{\ell}_{L} \mathrm{i} \gamma^{\mu} \tilde{D}_{\mu} \ell_{L}+\bar{e}_{R} \mathrm{i} \gamma^{\mu} D_{\mu} e_{R} \tag{6}
\end{equation*}
$$

with $\ell_{L}=\left(\nu_{L}, e_{L}\right)$ the left-handed $S U(2)$ isospin doublet and e_{R} the right-handed singlet. The covariant derivatives are given as

$$
\begin{align*}
\left(\tilde{D}_{\mu}\right)_{b c} & =\partial_{\mu} \delta_{b c}+\frac{\mathrm{i} g^{\prime}}{2} B_{\mu} \delta_{b c}-\mathrm{i} g T_{b c}^{a} W_{\mu}^{a} \tag{7}\\
D_{\mu} & =\partial_{\mu}+\mathrm{i} g^{\prime} B_{\mu} \tag{8}
\end{align*}
$$

where T^{a} are the generators of $S U(2)$.
i) Insert the covariant derivatives and simplify as much as possible to identify the kinetic and interaction terms.
ii) Identify the currents

$$
\begin{equation*}
j_{\nu_{L}}^{\mu}=\bar{\nu}_{L} \gamma^{\mu} \nu_{L}, \quad j_{e_{L}}^{\mu}=\bar{e}_{L} \gamma^{\mu} e_{L}, \quad j_{e_{R}}^{\mu}=\bar{e}_{R} \gamma^{\mu} e_{R} \tag{9}
\end{equation*}
$$

to rewrite the interaction terms and replace the coupling g^{\prime} using the Weinberg mixing angle

$$
\begin{equation*}
\tan \theta_{W}=\frac{g^{\prime}}{g} . \tag{10}
\end{equation*}
$$

iii) The gauge fields B_{μ} and W_{μ} are connected to the physical gauge bosons $\left\{W^{ \pm}, Z, A\right\}$. Use the following redefinitions and rotations to rewrite the Lagrangian in terms of physical fields

$$
\begin{align*}
W_{\mu}^{+} & =\frac{1}{\sqrt{2}}\left(W_{\mu}^{1}-\mathrm{i} W_{\mu}^{2}\right), \tag{11}\\
W_{\mu}^{-} & =\frac{1}{\sqrt{2}}\left(W_{\mu}^{1}+\mathrm{i} W_{\mu}^{2}\right), \tag{12}\\
B_{\mu} & =\cos \theta_{W} A_{\mu}-\sin \theta_{W} Z_{\mu}, \tag{13}\\
W_{\mu}^{3} & =\cos \theta_{W} Z_{\mu}+\sin \theta_{W} A_{\mu} . \tag{14}
\end{align*}
$$

Identify the electrical charge e as a function of θ_{W} and g.

