## Exercise 1: Adjoint Representation of $S U(N)$

Consider the Lie group $S U(N)$. The fundamental representation of the group is given by the $N \times N$ matrices $U \in S U(N)$

$$
\begin{equation*}
U=e^{-\mathrm{i} \theta^{a} T^{a}}, \quad a=1, \ldots, N^{2}-1 \tag{1}
\end{equation*}
$$

with generators $T^{a}$ of the Lie group and antisymmetric structure constants $f^{a b c}$, that satisfy the Lie algebra

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=\mathrm{i} f^{a b c} T^{c} \tag{2}
\end{equation*}
$$

and are normalized as

$$
\begin{equation*}
\operatorname{tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b} \tag{3}
\end{equation*}
$$

A field $\phi^{a}$ is said to transform with the adjoint representation of the group $S U(N)$ if the associated matrix valued field, defined by $\phi:=\phi^{a} T^{a}$ transforms as

$$
\begin{equation*}
\phi^{\prime}=U \phi U^{\dagger} \tag{4}
\end{equation*}
$$

i) Show that the transformation of the components $\phi^{a}$, and therefore the adjoint representation $D^{a b}(U)$ is given as

$$
\begin{equation*}
\phi^{a} \rightarrow \phi^{a \prime}=D^{a b}(U) \phi^{b}=2 \operatorname{tr}\left(U^{\dagger} T^{a} U T^{b}\right) \phi^{b} . \tag{5}
\end{equation*}
$$

ii) The covariant derivative acting on the matrix valued field $\phi=\phi^{a} T^{a}$ is defined as

$$
\begin{equation*}
D_{\mu} \phi(x)=\partial_{\mu} \phi(x)-\mathrm{i} g\left[A_{\mu}, \phi(x)\right] . \tag{6}
\end{equation*}
$$

Show that this indeed transforms as the adjoint representation

$$
\begin{equation*}
\left(D_{\mu} \phi\right)^{\prime}(x)=U(x)\left(D_{\mu} \phi(x)\right) U^{\dagger}(x) \tag{7}
\end{equation*}
$$

with $U(x) \in S U(N)$ and that

$$
\begin{equation*}
\left(D_{\mu} \phi\right)^{a}=\partial_{\mu} \phi^{a}-g f^{a b c} A_{\mu}^{c} \phi^{b} \tag{8}
\end{equation*}
$$

iii) Prove that for two matrices $U, U^{\prime} \in S U(N)$ in fundamental representation, one has

$$
\begin{equation*}
D^{a b}(U) D^{b c}\left(U^{\prime}\right)=D^{a c}\left(U U^{\prime}\right) \tag{9}
\end{equation*}
$$

by making use of the following relation

$$
\begin{equation*}
T_{l i}^{a} T_{n o}^{a}=\frac{1}{2}\left(\delta_{l o} \delta_{i n}-\frac{1}{N} \delta_{l i} \delta_{n o}\right) \tag{10}
\end{equation*}
$$

## Exercise 2: Yang-Mills theory

In the lecture you derived the covariant derivative of $S U(N)$ gauge theory

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}-\mathrm{i} g A_{\mu}^{a} T^{a}, \tag{11}
\end{equation*}
$$

with $S U(N)$ gauge field $A_{\mu}^{a}$ and the generators $T^{a}$ of the $S U(N)$ group, normalized to $\operatorname{tr}\left(T^{a} T^{b}\right)=$ $\frac{1}{2} \delta^{a b}$.
i) Use the covariant derivative to calculate the field strength tensor $F_{\mu \nu}^{a}$ of $S U(N)$ gauge theory via

$$
\begin{equation*}
F_{\mu \nu}=\frac{\mathrm{i}}{g}\left[D_{\mu}, D_{\nu}\right] . \tag{12}
\end{equation*}
$$

ii) The Lagrangian of Yang-Mills theory is constructed from the field strength tensor $F^{\mu \nu}$ in the following, gauge invariant way

$$
\begin{equation*}
\mathcal{L}_{Y M}=-\frac{1}{2} \operatorname{tr}\left(F^{\mu \nu} F_{\mu \nu}\right) . \tag{13}
\end{equation*}
$$

Use your result from i) to express the Lagrangian in terms of $A^{\mu a}$ and identify the self interaction terms.

## Exercise 3: Isospin

In the lecture you discussed the following interaction term for a nucleon $N=(p, n)$, pion $\phi=T^{a} \phi^{a}=\mathbf{T} \cdot\left(\frac{1}{\sqrt{2}}\left(\pi^{+}+\pi^{-}\right), \frac{\mathrm{i}}{\sqrt{2}}\left(\pi^{+}-\pi^{-}\right), \pi^{0}\right)$ interaction

$$
\begin{equation*}
\bar{N} \gamma^{5} T^{a} N \phi^{a}, \tag{14}
\end{equation*}
$$

with $T^{a}$ the generators of $S U(2)$.
i) Show that the interaction term is invariant under isospin transformations. Recall that the nucleon transforms with the fundamental representation of $S U(2)$ and the components of the pion field with the adjoint representation.
Hint: Make use of the relation for group generators $T^{a}$ given in exercise 1 iii).
ii) Can you think of alternative pion nucleon interaction terms respecting isospin, baryon number, parity and Lorentz invariance?

