Exercise 1: Natural units

Natural units are defined by setting $c=\hbar=1$.
Use natural units to express 1 kg in GeV , as well as $1 s$ in $1 / \mathrm{GeV}$. Use your results to express Newton's constant of gravity

$$
\begin{equation*}
G_{N}=6,67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{kgs}^{2}} \tag{1}
\end{equation*}
$$

in natural units.
Finally give the value of the Planck mass $M_{p l}=1 / \sqrt{G_{N}}$.

Exercise 2: Charged particle in a constant magnetic field

We consider a particle with charge e and mass m.
i) The Lagrangian of a charged particle in an electromagnetic field is given by

$$
\begin{equation*}
L(\mathbf{r}, \dot{\mathbf{r}}, t)=\frac{1}{2} m \dot{\mathbf{r}}^{2}+e \frac{\dot{\mathbf{r}}}{c} \cdot \mathbf{A}(\mathbf{r})-e \Phi(\mathbf{r}) \tag{2}
\end{equation*}
$$

with the scalar potential $\Phi(\mathbf{r})$ and the vector potential $\mathbf{A}(\mathbf{r})$.
Calculate the Hamilton function $H(\mathbf{r}, \mathbf{p}, t)$ of the system, using a Legendre transformation.
ii) We consider now a charged particle moving in a constant magnetic field $\mathbf{B}(\mathbf{r})=B \cdot \mathbf{e}_{z}$, $\mathbf{E}(\mathbf{r})=0$. Determine the corresponding vector potential $\mathbf{A}(\mathbf{r})$ (const. in time), as well as the scalar potential $\Phi(\mathbf{r})$. Use your results to formulate the Hamilton function of the system.
(Hint: Choose the vector potential such, that it has only a non-zero value in y direction $\left.\mathbf{A}(\mathbf{r})=A(\mathbf{r}) \cdot \mathbf{e}_{y}\right)$
iii) We are now going to describe the system quantum-mechanically. Use the correspondence principle of quantum mechanics to formulate the Hamilton operator. Finally give the time-independent Schrödinger equation of the system.

Exercise 3: Harmonic oscillator in quantum mechanics

Recall the time-independent Schrödinger equation of the one-dimensional harmonic oscillator in quantum mechanics

$$
\begin{equation*}
\left(\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}\right) \psi(x)=E \psi(x) \tag{3}
\end{equation*}
$$

with momentum operator \hat{p} and the position operator \hat{x}.
It has been shown that the energy eigenvalues E can be calculated easily in an energy basis of the system $\{|n\rangle\}, n \in \mathbb{N}$, by making use of two operators defined as

$$
\begin{equation*}
\hat{a}:=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{\mathrm{i}}{m \omega} \hat{p}\right), \quad \hat{a}^{\dagger}:=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{\mathrm{i}}{m \omega} \hat{p}\right) \tag{4}
\end{equation*}
$$

with the property to raise and lower ('create' and 'annihilate') the states

$$
\begin{equation*}
\hat{a}|n\rangle=c_{n}^{-}|n-1\rangle, \quad \hat{a}^{\dagger}|n\rangle=c_{n}^{+}|n+1\rangle . \tag{5}
\end{equation*}
$$

The occupation number operator acts as

$$
\begin{equation*}
\hat{N}|n\rangle=\hat{a}^{\dagger} \hat{a}|n\rangle=n|n\rangle . \tag{6}
\end{equation*}
$$

Calculate the commutator $\left[\hat{a}, \hat{a}^{\dagger}\right]$ and the normalization constants c_{n}^{-}and c_{n}^{+}. Use the operators \hat{a} and \hat{a}^{\dagger} to reformulate the Hamilton operator and give the energy eigenvalues E_{n}.

Exercise 4: Continuity equation in quantum mechanics

Consider a wave function $\psi(\mathbf{r}, t)$ satisfying the Schrödinger equation

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} \Delta+V(\mathbf{r})\right) \psi(\mathbf{r}, t)=\mathrm{i} \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) \tag{7}
\end{equation*}
$$

The probability density is defined as $\rho(\mathbf{r}, t):=\psi^{*}(\mathbf{r}, t) \psi(\mathbf{r}, t)$. Show that it satisfies the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho(\mathbf{r}, t)+\nabla \cdot \mathbf{j}(\mathbf{r}, t)=0 \tag{8}
\end{equation*}
$$

where $\mathbf{j}(\mathbf{r}, t)$ is the propability current

$$
\begin{equation*}
\mathbf{j}(\mathbf{r}, t):=\frac{\hbar}{2 \mathrm{i} m}\left(\psi^{*}(\nabla \psi)-\left(\nabla \psi^{*}\right) \psi\right) . \tag{9}
\end{equation*}
$$

