Exercise Sheet 11

SoSe 2025

Theoretische Physik 4: Quantenmechanik

Prof. Dr. C. Gros

Posted 07.07.2025, due by 12:00pm 14.07.2025.

Exercise 1 (8 points)

For the simple harmonic oscillator, with frequency ω , we have had a dedicated chapter solving it in the Schrödinger picture. Now let's see what happens in the Heisenberg picture.

- 1. (1/8) For any potential, what is the definition of the Heisenberg picture operators $\hat{x}_H(t)$ and $\hat{p}_H(t)$? What are their eigenvectors $|x,t\rangle_H$ and $|p,t\rangle_H$? Do these eigenvectors form a complete set?
- 2. (3/8) Derive the equations of motion of $\hat{x}_H(t)$ and $\hat{p}_H(t)$ and solve them.
- 3. (1/8) Find the position representation of $\hat{x}_H(t)$ and $\hat{p}_H(t)$.
- 4. (2/8) Calculate the commutators $[\hat{x}_H(t_1), \hat{x}_H(t_2)]$, $[\hat{p}_H(t_1), \hat{p}_H(t_2)]$, and $[\hat{x}_H(t_1), \hat{p}_H(t_2)]$. What is the key difference with the Schrödinger picture operators?
- 5. (1/8) Show that $[\Delta x(t_1)]^2 [\Delta x(t_2)]^2 \ge \frac{\hbar^2}{4m^2\omega^2} \sin^2[\omega(t_2 t_1)]$

Exercise 2 (12 points)

Consider a classical vector $\mathbf{v} = \sum_{\mu} v_{\mu} \mathbf{e}_{\mu}$, with components v_{μ} in a right-handed cartesian co-ordinate basis $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$.

1. (1/12) Show that a rotation of angle α around the cartesian +z-axis changes the vector **v** to a new vector **v**' given by

$$v'_{\mu} = R^{(z)}_{\mu\nu}(\alpha)v_{\nu}, \text{ with matrix representation } \mathbf{R}^{(z)}(\alpha) = \begin{pmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

2. (2/12) Show that an infinitesimal small rotation angle δa gives an infinitesimal change $\delta \mathbf{v} = \mathbf{v}' - \mathbf{v} = \delta \alpha (\mathbf{e}_z \times \mathbf{v})$

3. (1/12) Show that an infinitesimal small rotation angle $\delta \phi$ around any unit vector **n**, gives an infinitesimal change $\delta \mathbf{v} = \mathbf{v}' - \mathbf{v} = \delta \phi(\mathbf{n} \times \mathbf{v})$

Given a rotation \mathbf{R} we can consider the operator $\hat{D}_{\mathbf{R}}$ which would rotate a state localized at position $|\mathbf{r}\rangle$ to a state localized at the rotated position $|\mathbf{r}'\rangle = \hat{D}_{\mathbf{R}} |\mathbf{r}\rangle$. Since rotations should preserve the norm of the states, it must be that $\hat{D}_{\mathbf{R}}$ is a unitary operator. Given a general system state $|\psi\rangle$, a rotation takes us from $\psi(\mathbf{r}) = \langle \mathbf{r} | \psi \rangle$ to $\psi(\mathbf{r}') = \langle \mathbf{r}' | \psi \rangle$.

4. (3/12) Show that for an infinitesimal small rotation angle $\delta\phi$ around unit vector **n** the wavefunction changes as $\psi(\mathbf{r}') = (1 + \delta\phi\mathbf{n} \cdot (\mathbf{r} \times \nabla))\psi(\mathbf{r})$, and then show that the corresponding infinitesimal rotation operator is $\hat{D}_{\mathbf{R}^{(n)}(\delta\phi)} = \hat{I} - \frac{i}{\hbar}\delta\phi\mathbf{n}\cdot\hat{\mathbf{L}}$

One can chain together many infinitesimal small rotation $\delta\phi$ around a single unit vector **n**, to a finite ϕ rotation around **n**. We can imagine this construction by breaking up the angle ϕ into many small angles $\delta\phi = \phi/N$ and making the subdivisions N arbitrarally large (infinity many).

5. (2/12) Show that the rotation of angle ϕ around unit vector **n** results in the rotation operator is $\hat{D}_{\mathbf{R}^{(n)}(\phi)} = e^{-\frac{i}{\hbar}\phi\mathbf{n}\cdot\hat{\mathbf{L}}}$.

Now let's think about it in reverse. We make a demand:

Under a rotation of angle ϕ around unit vector \mathbf{n} , we demand that kets transform as $|\psi_R\rangle = e^{-\frac{i}{\hbar}\phi\mathbf{n}\cdot\hat{\mathbf{J}}} |\psi\rangle$, where $\hat{\mathbf{J}}$ a vector operator (an operator whose expectation values behave like classical vectors).

6. (3/12) Show that it must be the case that $[\hat{J}_i, \hat{J}_j] = i\hbar\epsilon_{ijk}\hat{J}_k$. Given this, discuss what these operators $\hat{\mathbf{J}}$ could be.