Exercise Sheet 5

SoSe 2025

Prof. Dr. C. Gros

Posted 26.05.2025, due by 12:00pm 02.06.2025.

Exercise 1 (12 points)

For two operators \hat{A} , \hat{B} we want to show the identity

$$e^{-\hat{A}}\hat{B}e^{\hat{A}} = \hat{B} + \frac{1}{1!}[\hat{B},\hat{A}] + \frac{1}{2!}[[\hat{B},\hat{A}],A] + \dots = \sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{C}_{\hat{A}}^{(n)}(\hat{B}),$$
(1)

where, for compact notation, we have defined the operator function $C_{\hat{A}}(\hat{B}) = [\hat{B}, \hat{A}]$. The notation $C_{\hat{A}}^{(n)}(\hat{B})$ indicates the n^{th} composition of the function. The null composition n = 0, in other words no function operation, is just the function argument $C_{\hat{A}}^{(0)}(\hat{B}) = B$. The n = 1 composition is the function applied once $C_{\hat{A}}^{(1)}(\hat{B}) = C_{\hat{A}}(\hat{B}) = [\hat{B}, \hat{A}]$. The n = 2 composition is $C_{\hat{A}}^{(2)}(\hat{B}) = C_{\hat{A}}(C_{\hat{A}}(\hat{B})) = [C_{\hat{A}}(\hat{B}), \hat{A}] = [[\hat{B}, \hat{A}], \hat{A}]$. The pattern continues like this for any n.

- 1. (2/12) Define the function $f(u) = e^{-u\hat{A}}\hat{B}e^{u\hat{A}}$ where $u \in \mathbb{R}$ a real variable. Show that $\partial_u^n f(u) = e^{-u\hat{A}}\mathcal{C}_{\hat{A}}^{(n)}(\hat{B})e^{u\hat{A}}$ by induction.
- 2. (2/12) Use the above result to prove the identity Eq. (1).

Some times the commutators terminate quickly. Lest consider the case where $[\hat{A}, \hat{B}] = c$ is just a complex constant $c \in \mathbb{C}$ (we have already met such cases, for example \hat{x} and \hat{p} , or \hat{a}^{\dagger} and \hat{a}). Then we have that another important identity to show

If
$$[\hat{A}, \hat{B}] = c \in \mathbb{C}$$
, then $e^{\hat{A}}e^{\hat{B}} = e^{\hat{A}+\hat{B}+\frac{1}{2}[\hat{A},\hat{B}]}$. (2)

- 3. (2/12) Define the operator function $f(u) = e^{u\hat{A}}e^{u\hat{B}}$, where $u \in \mathbb{R}$ a real variable, and assuming $[\hat{A}, \hat{B}] = c \in \mathbb{C}$, show that $\partial_u f(u) = (\hat{A} + \hat{B} + uc)f(u)$.
- 4. (2/12) Find the solution f(u) to the differential equation above, and use it to prove the identity Eq. (2).

Lets consider any system, that has somehow simplified to the hamiltonian $\hat{H} = \hbar \omega (\hat{a}^{\dagger} \hat{a} + \frac{1}{2})$, where \hat{a}^{\dagger} , \hat{a} a pair of ladder operators (this can be as simple as the harmonic oscillator, or an emergent harmonic oscillator hamiltonian like we saw last week with the magnetic field). Lets call ψ_n the eigenstates of \hat{H} with energy eigenvalue E_n . One can define a displacement operator in terms of the ladder operators:

$$\hat{D}(z) = \mathrm{e}^{z\hat{a}^{\dagger} - z^*\hat{a}},\tag{3}$$

where $z \in \mathbb{C}$ a complex variable. The displacement operator $\hat{D}(z)$ can be shown to be a generator of coherent states.

- 5. (2/12) Show that $\phi_z = \hat{D}(z)\psi_0$ is a coherent state.
- 6. (2/12) Show that the operator can be re-written in the form $\hat{D}(z) = e^{-|z|^2/2} e^{z\hat{a}^{\dagger}} e^{z^*\hat{a}}$, and use it to find the expansion of ϕ_z into the ψ_n states.

Exercise 2 (8 points)

Consider a particle of mass m in the infinite square well potential

$$V(x) = \begin{cases} 0 & |x| \le \frac{L}{2} \\ \infty & |x| > \frac{L}{2} \end{cases}.$$
 (4)

Lets say we have carefully prepared the system at time t = 0 and it is described by the wavefunction

$$\psi(x,0) = \begin{cases} N(x - \frac{L}{2})(x + \frac{L}{2}) & \text{for } |x| \le \frac{L}{2} \\ 0 & |x| > \frac{L}{2} \end{cases}$$
(5)

- 1. (1/8) Normalize $\psi(x, 0)$ and find N.
- 2. (3/8) Suppose you measure the energy of the particle at t = 0. What are the energy values that could be found? What is the probability to measure each energy value? You can make use of the following two integrals:

$$\int dx \, x^2 \cos x = (x^2 - 2) \sin x + 2x \cos x, \quad \int dx \, x^2 \sin x = -(x^2 - 2) \cos x + 2x \sin x$$

- 3. (3/8) Evaluate explicitly the probability to measure the ground state to 4 decimal points, and discuss if this result should be expected. Also discuss the overall result you found above, and if it should have been expected.
- 4. (1/8) Write down the wave function $\psi(x, t)$ for all times t.