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Exercise 1 (20 points)

Consider a particle of charge q and mass m, in the presence of an external magnetic field B. The Hamiltonian that
describes such a system is given by

H =
(p− q

cA(r))2

2m
(1)

where p = mṙ + q
cA(r) is the generalized momentum corresponding to the generalized position r, and A(r) is the

vector potential that describes the magnetic field B = ∇×A(r). As we saw in the lectures, the canonical quantization
proceeds by promoting r and p to operators r̂ and p̂ = −iℏ∇, such that [rµ, pν ] = iℏδµν . Solving the quantum problem
of a charged particle in a magnetic field is closely related to the methods of the harmonic oscillator.

Define the mechanical momentum π = mṙ = p − q
cA(r). Of course without a magnetic field (A(r) = 0), the

mechanical momentum π̂ and the generalized momentum p coincide, so this distinction never arose up to now. Lets
figure out the properties of the mechanical momentum.

1. (1/20) As a useful prelude, show that [p̂µ, f(r̂)] = −iℏ∂µf(r) for any function f(r̂) of the real space position r.

2. (2/20) Show that the commutation relations of the components of the mechanical momentum are [π̂µ, π̂ν ] =
i qcℏBλελµν .

Lets try and solve a simple problem of a uniform magnetic field. Consider a particle of charge q > 0 that is trapped
and can only move in the xy-plane, under the influence of an external uniform magnetic field B = −Bez pointing along
the (−z)-axis. When ever A(r) is explicitly needed work in the symmetric gauge A(r) = − 1

2 (r×B) = B
2 (yex −xey).

3. (1/20) Show that the symmetric gauge does indeed give the uniform magnetic field along the z-axis.

4. (1/20) Write the Hamiltonian of this system in terms of π̂x and π̂y, and discuss whether π̂x and π̂y are good
operators to describe the system (think about when do you share eigenvectors between operators?).

5. (2/20) Show that building new operators â = g(π̂x − iπ̂y), â
† = g(π̂x + iπ̂y), are ladder operators, where â the

lowering operator and â† the raising operator, with an appropriate choice of the constant g, and find what is
this g.

6. (2/20) Use the ladder operators â, â† to show that the Hamiltonain is actually very familiar, and find that the

energy eigenvalues are En = ℏωB

(
n+ 1

2

)
for n ≥ 0, where ωB = qB

mc .

Next we will find the ground state wavefunction ψ0(x, y) that corresponds to the lowest energy eigenvalue E0 = ℏωB/2.
This task will be easy if you define complex coordinates, z = x − iy and z̄ = z∗ = x + iy, and their holomorphic
derivatives ∂ = 1

2 (∂x + i∂y) and ∂̄ = 1
2 (∂x − i∂y). You can easily verify that the holomorphic derivatives are such

that ∂z = ∂̄z̄ = 1 and ∂z̄ = ∂̄z = 0. this means that a function of two variables ψ0(x, y) can be equally thought of
a function of a complex variable and its conjugate ψ0(z, z̄), where z and z̄ behave as if separate variables under the
holomorphic derivatives.

7. (3/20) Given that the lowering operator â is defined such that it destroys the ground state âψ0 = 0 (since
there is no where lower to go), and working in the symmetric gauge, show that the form for the ground state

eigenstate is ψ0(z, z̄) ∝ f(z)e−|z|2/4l2B for any smooth (holomorphic) function f(z), where lB =

√
ℏc
qB

(do not

bother with normalizations).
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So the two-dimensional system has reduced to a very familiar one-dimensional system, and you are using its language
to describe a completely different scenario. But wait, how did we get only one quantum number n out of a two-
dimensional system? Note that each spacial dimension should add a quantum number (for example, a running wave
in two dimensions e−ikxxe−ikyy with kx and ky two independent quantum numbers, this behaviour persists in localized
bound states too). Did we miss something?

8. (3/20) Define additional “momentum like” operators τ̂ = p̂+ q
cA, and show that constructing b̂ = g(τ̂x + iτ̂y),

b̂† = g(τ̂x − iτ̂y) gives you a new set of ladder operators, where g is the same as determined before for â, â†.

9. (2/20) Show that [Ĥ, τ̂µ] = 0, and from this qualitatively argue about the potential degeneracy of En states and
what operator could label them.

10. (3/20) Use the new lowering operator b̂ to determine f(z) in ψ0(z, z̄) (do not bother with normalizations) and
discuss how can you construct all the eigenstates that correspond to En states for any n?
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