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Exercise 1 (10 points)

We are slowly coming to terms with interpreting the absolute square of the wavefunction of one particle ρ(x) =
|ϕ(x)|2 = ϕ(x)∗ϕ(x) as the probability density to find the particle in real space interval [x, x+ dx], and by extension

the integral P (x1, x2) =

x2∫
x1

dxρ(x) =

x2∫
x1

dx|ϕ(x)|2 as the probability to find the the particle in the region [x1, x2]. This

interpretation places physical constrains on the form and properties of ϕ(x). Lets examine these constrains in more
detail.

1. (1/10) Argue why it must be the case that a physically meaningful wavefunction ϕ(x) is continuous.

(Hint: Consider the left and right limits lim
x→x−

o

ϕ(x) and lim
x→x+

o

ϕ(x), and keep in mind that ρ(x) = |ϕ(x)|2 is being

understood as a probability density.)

2. (1/10) Argue that it must be the case that any physically meaningful wavefunction must be normalized ∥ϕ(x)∥2 =

(ϕ(x), ϕ(x)) =

+∞∫
−∞

dx|ϕ(x)|2 = 1.

Such wavefunctions are called square integrable. These functions abstractly live in a vector space of square inte-
grable functions. For two “vectors” ϕ1 and ϕ2 of this vector space, the inner product is given by (ϕ1(x), ϕ2(x)) =
+∞∫

−∞

dxϕ∗1(x)ϕ2(x) and is well defined (has the properties of the inner product, most importantly the integrals have a

finite result) precisely when the wavefunctions are square integrable. This places limits on the x→ ±∞ behaviour of
ϕ(x).

3. (1/10) Explain why lim
x→±∞

ϕ(x) = 0 is the only reasonable case for a physically sound wavefuction.

4. (1/10) What is the slowest α power decay ϕ(x) ∼ xα allowed when x→ ±∞ so that the wavefuction is physically
sound?

Now, let us consider a very simple set of wavefunctions, that of running waves with wavevector k

ϕk(x) = Neikx = Nei
px
ℏ (1)

where the momentum is p = ℏk. The normalization constant N must be set such that ϕk is normalized to 1.

5. (1/10) Why is the running wave ill defined when applying the previous conclusions we reached?

This is only a problem of formality. We simply need to move into functionals. In the previous exercise sheet we saw
precisely such a functional, the delta function.

6. (1/10) Generalizing the inner product of the two running waves as (ϕk1
(x), ϕk2

(x)) =

+∞∫
−∞

dxϕ∗k1
(x)ϕk2

(x) =

δ(p1 − p2) (take it as a given) show that the running wave wavefunctions are orthogonal when k1 ̸= k2 and that

N = 1/
√
2πℏ
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This is as far as we can get without considering a specific physical system. Let us return to the Hamiltonian
Ĥ = p̂2/2m+V (x̂) that describes the dynamics of a particle under an external potential V (x). The wavefunction must

evolve according to the Schrödinger equation iℏ∂tψ(x, t) = Ĥψ(x, t). Very soon we will see that this can be reduced to

the time independent Schrödinger equation ĤϕE(x) = EϕE(x) under the substitution ψ(x, t) = e−iEt/ℏϕE(x). Solving
the time independent Schrödinger equation is the key to solving the Schrödinger equation. The time independent
Schrödinger equation is a second order partial differential equation in space, and is uniquely solvable under appropriate
boundary conditions. The previous analysis is crucial in setting the boundary conditions of ϕE(x). However, being a
second order partial differential equation, we must also have boundary conditions for the first derivative ∂xϕE(x).

7. (1/10) Starting with the time independent Schrödinger equation, and regrouping it so as to isolate ∂2xϕE(x)
on the left, show that if V (x) is everywhere continuous, then the first derivative ∂xϕE(x) must be everywhere
continuous.

(Hint: After regrouping, integrate both sides of the equation, in the region [xo − ϵ, xo + ϵ], for arbitrary small
ϵ > 0. This allows you to access the first derivatives near arbitrary x = xo.)

8. (1/10) Potentials need not be continuous. If V (x) has a simple discontinuity of the form

V (x) =

{
V1(x) x < xd
V2(x) x > xd

, V1(xd) ̸= V2(xd),

where the branches V1(x) and V2(x) are continuous, but the entire potential V (x) is not continuous. Show that
the first derivative ∂xϕE(x) must be everywhere continuous including x = xd.

9. (1/10) Now lets consider a potential V (x) with an aggressive discontinuity, something like V (x = xd) = ∞ but
everywhere else well behaved. Show that the first derivative ∂xϕ(x) must be everywhere continuous except for

x = xd where it is discontinuous, with the discontinuous jump of ∂xϕE(x)|x=xd
scaling as−2m

ℏ

xd+ϵ∫
xd−ϵ

dxV (x)ϕE(x)

for arbitrary small ϵ > 0.

10. (1/10) For the previously considered case of the aggressively discontinuous potential, is it physically reasonable
to consider cases where the discontinuous jump of ∂xϕE(x)|x=xd

is infinity large?

Exercise 2 (5 points)

We want to construct a wavefunction which is a localized wave packet in a region of width L. We may attempt to do
this by

ψk(x) =

{
Neikx |x| < L/2

0 else
(2)

1. (1/10) Argue from the continuity at x = ±L/2 that such a construction is not physically meaningful.

To amend this, lets alter the construction with two running waves

ψk(x) =

{
N+e

ikx +N−e
−ikx |x| < L/2

0 else
(3)

2. (1/10) What are the boundary conditions at x = ±L/2 to make this a physically meaningful wavefunction? Is
the condition at x = L/2 different than at x = −L/2 or are they somehow related and equivalent?

3. (1.5/10) Solve the boundary conditions and show that the solutions give us three cases: i) N+ = N− = 0 which
is trivially ψ(x) = 0 everywhere, ii) k = 2nπ/L with n ∈ Z and N+ = −N−, iii) k = (2n + 1)π/L with n ∈ Z
and N+ = N−. (Note how the continuity of our trial wavefunction of running waves forced k to be quantized.)

4. (1.5/10) For the non-trivial solutions, normalize the wavefunction.
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Exercise 3 (5 points)

Consider the wavefunction that is constant value within width L, and everywhere else is zero

ψ(x) =

{
N |x| < L/2

0 else
(4)

1. (1/10) Normalize the wavefunction and show that N = 1/
√
L.

2. (1/10) Show that the Fourier transform is ψ̃(k) =
1√
2π

+∞∫
−∞

dxψ(x)eikx =

√
L

2π

sin(kL/2)

kL/2
.

3. (1/10) What is the value of ψ̃(0)? Argue that it is the global maxima. ψ̃(k) hosts a collection of nodes (ψ(x) = 0),
at what k are they?

4. (1/10) Along with the global maxima of ψ̃(k), there is a collection of local maxima and minima as a result of
the oscillating sin term. These should continue on to infinity. In the limit |k|L/2 ≫ 1 approximately where can
we find these local maxima and where the local minima?

5. (1/10) Working in units of L = 1 (in other words setting L = 1) plot ψ(x) for x ∈ [−2, 2] and ψ̃(k) for
k ∈ [−10π, 10π]. Label the x-axis and y-axis. On the x-axis indicate with ticks and labels the locations of the

nodes. On the y-axis indicate with ticks and labels the global maxima. For ψ̃(k) plot only, also indicate with
solid vertical grid lines the locations of the approximate maxima you found (as many as can fit in the plot range
k ∈ [−10π, 10π]), and do the same for the approximate minima but with dashed lines.

Argue from the plots graphically that the spreads must be approximately ∆x ∼ L, and ∆p = ℏ∆k ∼ 2πℏ/L.
What can you say about the bound on ∆x∆p? Also comment about how good are the approximate locations
of the approximate maxima and minima you found and how/when do they fail?
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