Exercise Sheet 2 Theoretische Physik 4: Quantenmechanik
SoSe 2025 Prof. Dr. C. Gros

Posted 05.05.2025, due by 12:00pm 12.05.2025.

Exercise 1 (10 points)

We are slowly coming to terms with interpreting the absolute square of the wavefunction of one particle p(xz) =
|6(x)|? = ¢p(z)*¢(x) as the probability density to find the particle in real space interval [z, z + dx], and by extension
T

T2
the integral P(xz1,z2) = /do:p(x) = /dx\¢(x)|2 as the probability to find the the particle in the region [x1,22]. This

Xy 1
interpretation places physical constrains on the form and properties of ¢(z). Lets examine these constrains in more
detail.

1. (1/10) Argue why it must be the case that a physically meaningful wavefunction ¢(z) is continuous.

(Hint: Consider the left and right limits lim¢(z) and 1imﬁb(x), and keep in mind that p(z) = |¢(z)|? is being

T—T, T—Tg

understood as a probability density.)

2. (1/10) Argue that it must be the case that any physically meaningful wavefunction must be normalized ||¢(z)||? =

400
(6(x), 6(x)) = / dzlé(x)? = 1.

Such wavefunctions are called square integrable. These functions abstractly live in a vector space of square inte-

grable functions. For two “vectors” ¢, and ¢y of this vector space, the inner product is given by (¢1(x), ¢2(x)) =
—+oo

/ dz¢](z)pa(x) and is well defined (has the properties of the inner product, most importantly the integrals have a

— 00

finite result) precisely when the wavefunctions are square integrable. This places limits on the 2 — 400 behaviour of

o).

3. (1/10) Explain why Erﬁ ¢(z) = 0 is the only reasonable case for a physically sound wavefuction.

4. (1/10) What is the slowest a power decay ¢(x) ~ x® allowed when & — +00 so that the wavefuction is physically
sound?

Now, let us consider a very simple set of wavefunctions, that of running waves with wavevector k
or(x) = Neth® = Nei'n (1)
where the momentum is p = hk. The normalization constant N must be set such that ¢ is normalized to 1.
5. (1/10) Why is the running wave ill defined when applying the previous conclusions we reached?

This is only a problem of formality. We simply need to move into functionals. In the previous exercise sheet we saw
precisely such a functional, the delta function.
—+oo
6. (1/10) Generalizing the inner product of the two running waves as (¢, (), ¢r, (z)) = / dady, (), (x) =

— 00

d(p1 — p2) (take it as a given) show that the running wave wavefunctions are orthogonal when k; # ks and that

N =1/V2rh
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This is as far as we can get without considering a specific physical system. Let us return to the Hamiltonian
H = p?/2m+V (2) that describes the dynamics of a particle under an external potential V (x). The wavefunction must
evolve according to the Schrédinger equation ihdi(x,t) = H ¥(x,t). Very soon we will see that this can be reduced to
the time independent Schrodinger equation Hég (x) = E¢p(x) under the substitution ¢ (xz, t) = e~ P/ ¢y (z). Solving
the time independent Schrédinger equation is the key to solving the Schrodinger equation. The time independent
Schrédinger equation is a second order partial differential equation in space, and is uniquely solvable under appropriate
boundary conditions. The previous analysis is crucial in setting the boundary conditions of ¢g(z). However, being a
second order partial differential equation, we must also have boundary conditions for the first derivative 9, ¢ ().

7.

10.

(1/10) Starting with the time independent Schrédinger equation, and regrouping it so as to isolate 92¢g(x)
on the left, show that if V(z) is everywhere continuous, then the first derivative 0,¢g(x) must be everywhere
continuous.

(Hint: After regrouping, integrate both sides of the equation, in the region [z, — €, z, + €, for arbitrary small
€ > 0. This allows you to access the first derivatives near arbitrary x = x,.)

. (1/10) Potentials need not be continuous. If V(x) has a simple discontinuity of the form

) Vi(x) w<aq
V(z) = {V2(x) 2>y Vi(za) # Va(za),

where the branches Vj(x) and Va(x) are continuous, but the entire potential V'(x) is not continuous. Show that
the first derivative 0,¢ g (z) must be everywhere continuous including = = x4.

. (1/10) Now lets consider a potential V' (z) with an aggressive discontinuity, something like V(z = z4) = oo but

everywhere else well behaved. Show that the first derivative 0,¢(z) must be everywhere continuous except for
rqt+e

2
x = x4 where it is discontinuous, with the discontinuous jump of 9, ¢ g (z)|=, scaling as _Tm / dzV (2)og(z)
Trq—e€

for arbitrary small € > 0.

(1/10) For the previously considered case of the aggressively discontinuous potential, is it physically reasonable
to consider cases where the discontinuous jump of 9,5 (x)|z=, is infinity large?

Exercise 2 (5 points)

We want to construct a wavefunction which is a localized wave packet in a region of width L. We may attempt to do

this by
Netke |z| < L/2
i) = < ©)
0 else
1. (1/10) Argue from the continuity at = £L/2 that such a construction is not physically meaningful.

To amend this, lets alter the construction with two running waves

2.

3.

3)

Nyetkt N e~z |z| < L/2

0 else
(1/10) What are the boundary conditions at © = £L/2 to make this a physically meaningful wavefunction? Is
the condition at = L/2 different than at x = —L/2 or are they somehow related and equivalent?

(1.5/10) Solve the boundary conditions and show that the solutions give us three cases: i) Ny = N_ = 0 which
is trivially ¢(x) = 0 everywhere, ii) k = 2n7w/L with n € Z and Ny = —N_, iii) k = (2n+ 1)x/L withn € Z
and Ny = N_. (Note how the continuity of our trial wavefunction of running waves forced k to be quantized.)

4. (1.5/10) For the non-trivial solutions, normalize the wavefunction.
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Exercise 3 (5 points)

Consider the wavefunction that is constant value within width L, and everywhere else is zero

(a) = {N 7| < L/2 @

0 else
1. (1/10) Normalize the wavefunction and show that N = 1/v/L.

+oo
2. (1/10) Show that the Fourier transform is (k) = \/% / dazp(z)e™™ = 4/ ;W

3. (1/10) What is the value of ¢(0)? Argue that it is the global maxima. (k) hosts a collection of nodes (1)(z) = 0),
at what k are they?

4. (1/10) Along with the global maxima of (k), there is a collection of local maxima and minima as a result of
the oscillating sin term. These should continue on to infinity. In the limit |k|L/2 > 1 approximately where can
we find these local maxima and where the local minima?

5. (1/10) Working in units of L = 1 (in other words setting L = 1) plot 1(z) for = € [-2,2] and (k) for
k € [-107,107]. Label the x-axis and y-axis. On the x-axis indicate with ticks and labels the locations of the
nodes. On the y-axis indicate with ticks and labels the global maxima. For {/;(k) plot only, also indicate with
solid vertical grid lines the locations of the approximate maxima you found (as many as can fit in the plot range
k € [=10m, 107]), and do the same for the approximate minima but with dashed lines.

Argue from the plots graphically that the spreads must be approximately Az ~ L, and Ap = hAk ~ 27h/L.
What can you say about the bound on AzAp? Also comment about how good are the approximate locations
of the approximate maxima and minima you found and how/when do they fail?
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